A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions.

IF 7.2 2区 生物学 Q1 BIOPHYSICS Quarterly Reviews of Biophysics Pub Date : 2021-03-16 DOI:10.1017/S0033583521000032
J Michael Schurr
{"title":"A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions.","authors":"J Michael Schurr","doi":"10.1017/S0033583521000032","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative parameters for a two-state cooperative transition in duplex DNAs were finally obtained during the last 5 years. After a brief discussion of observations pertaining to the existence of the two-state equilibrium per se, the lengths, torsion, and bending elastic constants of the two states involved and the cooperativity parameter of the model are simply stated. Experimental tests of model predictions for the responses of DNA to small applied stretching, twisting, and bending stresses, and changes in temperature, ionic conditions, and sequence are described. The mechanism and significance of the large cooperativity, which enables significant DNA responses to such small perturbations, are also noted. The capacity of the model to resolve a number of long-standing and sometimes interconnected puzzles in the extant literature, including the origin of the broad pre-melting transition studied by numerous workers in the 1960s and 1970s, is demonstrated. Under certain conditions, the model predicts significant long-range attractive or repulsive interactions between hypothetical proteins with strong preferences for one or the other state that are bound to well-separated sites on the same DNA. A scenario is proposed for the activation of the ilvPG promoter on a supercoiled DNA by integration host factor.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"54 ","pages":"e5"},"PeriodicalIF":7.2000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0033583521000032","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583521000032","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Quantitative parameters for a two-state cooperative transition in duplex DNAs were finally obtained during the last 5 years. After a brief discussion of observations pertaining to the existence of the two-state equilibrium per se, the lengths, torsion, and bending elastic constants of the two states involved and the cooperativity parameter of the model are simply stated. Experimental tests of model predictions for the responses of DNA to small applied stretching, twisting, and bending stresses, and changes in temperature, ionic conditions, and sequence are described. The mechanism and significance of the large cooperativity, which enables significant DNA responses to such small perturbations, are also noted. The capacity of the model to resolve a number of long-standing and sometimes interconnected puzzles in the extant literature, including the origin of the broad pre-melting transition studied by numerous workers in the 1960s and 1970s, is demonstrated. Under certain conditions, the model predicts significant long-range attractive or repulsive interactions between hypothetical proteins with strong preferences for one or the other state that are bound to well-separated sites on the same DNA. A scenario is proposed for the activation of the ilvPG promoter on a supercoiled DNA by integration host factor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA合作两态平衡的定量模型:实验测试、见解和预测。
在过去的5年中,终于获得了双工dna两态合作转变的定量参数。在简要讨论了两态平衡本身存在的观察结果之后,简单地说明了两态的长度、扭转和弯曲弹性常数以及模型的协同性参数。模型预测的DNA响应的实验测试小应用拉伸,扭转和弯曲应力,并在温度,离子条件和序列的变化进行了描述。机制和意义的大合作,使显著的DNA响应这样的小扰动,也注意到。该模型解决了现有文献中一些长期存在且有时相互关联的难题的能力,包括20世纪60年代和70年代许多工作者研究的广泛预融化转变的起源。在某些条件下,该模型预测了假设的蛋白质之间的显著的长期吸引或排斥相互作用,这些蛋白质与同一DNA上分离良好的位点结合在一起,具有强烈的偏好。提出了一种通过整合宿主因子激活超螺旋DNA上ilvPG启动子的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quarterly Reviews of Biophysics
Quarterly Reviews of Biophysics 生物-生物物理
CiteScore
12.90
自引率
1.60%
发文量
16
期刊介绍: Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.
期刊最新文献
Machinery, mechanism and information in post-transcription control of gene expression, from the perspective of unstable RNA. DYNAMICS AND KINETICS IN STRUCTURAL BIOLOGY: THE EXAMPLE OF DNA PHOTOLYASE. Allostery. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. From resting potential to dynamics: advances in membrane voltage indicators and imaging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1