{"title":"Temperature-Induced Changes in Hatching Size of a Tropical Snail Occur During Oogenesis and Can Persist for Several Weeks.","authors":"Sophia Ly, Rachel Collin","doi":"10.1086/712115","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractIt is accepted that temperature affects offspring size in ectotherms. However, the processes that result in temperature-induced changes are not well understood. We sought to determine when temperature changes during development induce changes in hatching size and how long hatchlings reflect the previous thermal experiences of their mother. Juveniles of the common tropical slipper snail <i>Crepidula</i> cf. <i>marginalis</i> were collected at Playa Venado, Panama; were raised in the laboratory at either 24 °C or 28 °C, temperatures experienced in nature; and were reciprocally moved between the two temperatures. In the first experiment, the animals were moved immediately after oviposition to determine whether temperatures experienced during oogenesis or embryogenesis contribute to differences in hatching size. The second experiment transplanted animals between the same two temperatures after the first brood hatched. The subsequent three broods were measured to determine how long the legacy of the first temperature persists. We found that (i) the temperature the mother experienced during oogenesis significantly affects hatching size, whereas the temperature experienced during embryogenesis does not; and (ii) hatching size is impacted for at least two broods after a change in temperature (≥17 days). These results show that hatching size is a legacy of temperatures experienced prior to oviposition and that this legacy does not persist for more than two brooding cycles. It remains unclear whether this rapid response to environmental temperature is adaptive or the result of a physiological constraint on oogenesis. Understanding the process whereby temperature influences offspring size will provide insight into the potential for organisms to respond to temperature changes and, ultimately, climate change.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"240 1","pages":"16-22"},"PeriodicalIF":2.1000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/712115","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/712115","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
AbstractIt is accepted that temperature affects offspring size in ectotherms. However, the processes that result in temperature-induced changes are not well understood. We sought to determine when temperature changes during development induce changes in hatching size and how long hatchlings reflect the previous thermal experiences of their mother. Juveniles of the common tropical slipper snail Crepidula cf. marginalis were collected at Playa Venado, Panama; were raised in the laboratory at either 24 °C or 28 °C, temperatures experienced in nature; and were reciprocally moved between the two temperatures. In the first experiment, the animals were moved immediately after oviposition to determine whether temperatures experienced during oogenesis or embryogenesis contribute to differences in hatching size. The second experiment transplanted animals between the same two temperatures after the first brood hatched. The subsequent three broods were measured to determine how long the legacy of the first temperature persists. We found that (i) the temperature the mother experienced during oogenesis significantly affects hatching size, whereas the temperature experienced during embryogenesis does not; and (ii) hatching size is impacted for at least two broods after a change in temperature (≥17 days). These results show that hatching size is a legacy of temperatures experienced prior to oviposition and that this legacy does not persist for more than two brooding cycles. It remains unclear whether this rapid response to environmental temperature is adaptive or the result of a physiological constraint on oogenesis. Understanding the process whereby temperature influences offspring size will provide insight into the potential for organisms to respond to temperature changes and, ultimately, climate change.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.