{"title":"Does Short-Term and Low-Dose N-Acetylcysteine Affect Oxidative Stress and Inflammation in The Liver Tissues of Diabetic Rats?","authors":"Fatma Genç, Emine Gülçeri Güleç Peker","doi":"10.1177/10998004211003668","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a serious chronic disease in which the oxidant-antioxidant balance is impaired, causing many complications, including hepatopathy. In this study, the effects of short-term and low-dose <i>N-acetylcysteine</i> (NAC) administration on the biochemical, proinflammatory, and oxidative stress parameters in the liver tissue of diabetic rats were investigated. Twenty-four adult male Wistar albino rats weighing approximately 250-300 g were divided into 4 groups (n = 6): Control, Streptozotosin (STZ)-induced diabetes (DM), NAC treatment (60 mg/kg), and STZ-induced diabetes treated with NAC (DM+NAC; 60 mg/kg). NAC treatment was administered intraperitoneally as a single daily dose for 7 days. At the end of the experiment (3 weeks), blood and liver samples were collected for biochemical parameter analysis. Lipid peroxidation, antioxidant parameters, and nitric oxide (NOx) levels were determined by spectrophotometric method. Tissue inflammation parameters were evaluated by ELISA. Lipid peroxidation, proinflammatory cytokines, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) values increased significantly with diabetes. NAC treatment significantly decreased serum ALT and AST levels and proinflammatory cytokines in the diabetic group. Liver glutathione (GSH) and NOx levels increased significantly in the DM+NAC group (<i>p <</i> 0.05). While NAC treatment reduced lipid peroxidation in the liver, it improved the inflammatory response and antioxidant status. The beneficial effect of NAC treatment may be due to its antioxidant activity and the resulting increased level of GSH. The results show that low-dose and short-term NAC treatment had a positive effect on oxidative damage and inflammation in liver tissue. NAC can be used as a potential antioxidant in diabetes to prevent hepatopathy.</p>","PeriodicalId":8997,"journal":{"name":"Biological research for nursing","volume":"23 4","pages":"568-574"},"PeriodicalIF":1.9000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10998004211003668","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological research for nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10998004211003668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 2
Abstract
Diabetes mellitus is a serious chronic disease in which the oxidant-antioxidant balance is impaired, causing many complications, including hepatopathy. In this study, the effects of short-term and low-dose N-acetylcysteine (NAC) administration on the biochemical, proinflammatory, and oxidative stress parameters in the liver tissue of diabetic rats were investigated. Twenty-four adult male Wistar albino rats weighing approximately 250-300 g were divided into 4 groups (n = 6): Control, Streptozotosin (STZ)-induced diabetes (DM), NAC treatment (60 mg/kg), and STZ-induced diabetes treated with NAC (DM+NAC; 60 mg/kg). NAC treatment was administered intraperitoneally as a single daily dose for 7 days. At the end of the experiment (3 weeks), blood and liver samples were collected for biochemical parameter analysis. Lipid peroxidation, antioxidant parameters, and nitric oxide (NOx) levels were determined by spectrophotometric method. Tissue inflammation parameters were evaluated by ELISA. Lipid peroxidation, proinflammatory cytokines, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) values increased significantly with diabetes. NAC treatment significantly decreased serum ALT and AST levels and proinflammatory cytokines in the diabetic group. Liver glutathione (GSH) and NOx levels increased significantly in the DM+NAC group (p < 0.05). While NAC treatment reduced lipid peroxidation in the liver, it improved the inflammatory response and antioxidant status. The beneficial effect of NAC treatment may be due to its antioxidant activity and the resulting increased level of GSH. The results show that low-dose and short-term NAC treatment had a positive effect on oxidative damage and inflammation in liver tissue. NAC can be used as a potential antioxidant in diabetes to prevent hepatopathy.
期刊介绍:
Biological Research For Nursing (BRN) is a peer-reviewed quarterly journal that helps nurse researchers, educators, and practitioners integrate information from many basic disciplines; biology, physiology, chemistry, health policy, business, engineering, education, communication and the social sciences into nursing research, theory and clinical practice. This journal is a member of the Committee on Publication Ethics (COPE)