{"title":"Within-session repeated transcranial direct current stimulation of the posterior parietal cortex enhances spatial working memory.","authors":"Rongjuan Zhu, Yangmei Luo, Ziyu Wang, Xuqun You","doi":"10.1080/17588928.2021.1877648","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial working memory (SWM) is an essential cognitive ability that supports complex tasks, but its capacity is limited. Studies using transcranial direct current stimulation (tDCS) have shown potential benefits for SWM performance. Recent studies have shown that repeated short applications of tDCS affected corticospinal excitability. Moreover, neuroimaging studies have indicated that the pattern of neural activity measured in the posterior parietal cortex (PPC) tracks SWM ability. It is unknown whether repeated tDCS can enhance SWM and whether varied tDCS protocols (single 10 min tDCS, 10 min tDCS-5 min break-10 min tDCS, 10 min tDCS-20 min break-10 min tDCS) over the right PPC have different effects on SWM. The current study investigated whether offline single-session and repeated tDCS over the right PPC affects SWM updating, as measured by spatial 2-back and 3-back tasks. The results showed that stimulating the right PPC with repeated 10 min anodal tDCS significantly improved the response speed of the spatial 2-back task relative to single-session tDCS. Repeated 10 min tDCS with a longer interval (i.e. inter-stimulation interval of 20 min) enhanced the response speed of the spatial 3-back task. Altogether these findings provide causal evidence that suggests that the right PPC plays an important role in SWM. Furthermore, repeated tDCS with longer intervals may be a promising intervention for improving SWM-related function.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"26-37"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17588928.2021.1877648","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2021.1877648","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Spatial working memory (SWM) is an essential cognitive ability that supports complex tasks, but its capacity is limited. Studies using transcranial direct current stimulation (tDCS) have shown potential benefits for SWM performance. Recent studies have shown that repeated short applications of tDCS affected corticospinal excitability. Moreover, neuroimaging studies have indicated that the pattern of neural activity measured in the posterior parietal cortex (PPC) tracks SWM ability. It is unknown whether repeated tDCS can enhance SWM and whether varied tDCS protocols (single 10 min tDCS, 10 min tDCS-5 min break-10 min tDCS, 10 min tDCS-20 min break-10 min tDCS) over the right PPC have different effects on SWM. The current study investigated whether offline single-session and repeated tDCS over the right PPC affects SWM updating, as measured by spatial 2-back and 3-back tasks. The results showed that stimulating the right PPC with repeated 10 min anodal tDCS significantly improved the response speed of the spatial 2-back task relative to single-session tDCS. Repeated 10 min tDCS with a longer interval (i.e. inter-stimulation interval of 20 min) enhanced the response speed of the spatial 3-back task. Altogether these findings provide causal evidence that suggests that the right PPC plays an important role in SWM. Furthermore, repeated tDCS with longer intervals may be a promising intervention for improving SWM-related function.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.