{"title":"Sequential Tests of Multiple Hypotheses Controlling False Discovery and Nondiscovery Rates.","authors":"Jay Bartroff, Jinlin Song","doi":"10.1080/07474946.2020.1726686","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a general and flexible procedure for testing multiple hypotheses about sequential (or streaming) data that simultaneously controls both the false discovery rate (FDR) and false nondiscovery rate (FNR) under minimal assumptions about the data streams which may differ in distribution, dimension, and be dependent. All that is needed is a test statistic for each data stream that controls its conventional type I and II error probabilities, and no information or assumptions are required about the joint distribution of the statistics or data streams. The procedure can be used with sequential, group sequential, truncated, or other sampling schemes. The procedure is a natural extension of Benjamini and Hochberg's (1995) widely-used fixed sample size procedure to the domain of sequential data, with the added benefit of simultaneous FDR and FNR control that sequential sampling affords. We prove the procedure's error control and give some tips for implementation in commonly encountered testing situations.</p>","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2020.1726686","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2020.1726686","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 15
Abstract
We propose a general and flexible procedure for testing multiple hypotheses about sequential (or streaming) data that simultaneously controls both the false discovery rate (FDR) and false nondiscovery rate (FNR) under minimal assumptions about the data streams which may differ in distribution, dimension, and be dependent. All that is needed is a test statistic for each data stream that controls its conventional type I and II error probabilities, and no information or assumptions are required about the joint distribution of the statistics or data streams. The procedure can be used with sequential, group sequential, truncated, or other sampling schemes. The procedure is a natural extension of Benjamini and Hochberg's (1995) widely-used fixed sample size procedure to the domain of sequential data, with the added benefit of simultaneous FDR and FNR control that sequential sampling affords. We prove the procedure's error control and give some tips for implementation in commonly encountered testing situations.
期刊介绍:
The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches.
Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.