Viviane Klingel, Jakob Kirch, Timo Ullrich, Sara Weirich, Albert Jeltsch, Nicole E Radde
{"title":"Model-based robustness and bistability analysis for methylation-based, epigenetic memory systems.","authors":"Viviane Klingel, Jakob Kirch, Timo Ullrich, Sara Weirich, Albert Jeltsch, Nicole E Radde","doi":"10.1111/febs.15838","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, epigenetic memory systems have been developed based on DNA methylation and positive feedback systems. Achieving a robust design for these systems is generally a challenging and multifactorial task. We developed and validated a novel mathematical model to describe methylation-based epigenetic memory systems that capture switching dynamics of methylation levels and methyltransferase amounts induced by different inputs. A bifurcation analysis shows that the system operates in the bistable range, but in its current setup is not robust to changes in parameters. An expansion of the model captures heterogeneity of cell populations by accounting for distributed cell division rates. Simulations predict that the system is highly sensitive to variations in temperature, which affects cell division and the efficiency of the zinc finger repressor. A moderate decrease in temperature leads to a highly heterogeneous response to input signals and bistability on a single-cell level. The predictions of our model were confirmed by flow cytometry experiments conducted in this study. Overall, the results of our study give insights into the functional mechanisms of methylation-based memory systems and demonstrate that the switching dynamics can be highly sensitive to experimental conditions.</p>","PeriodicalId":12261,"journal":{"name":"FEBS Journal","volume":"288 19","pages":"5692-5707"},"PeriodicalIF":5.5000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/febs.15838","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/febs.15838","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
In recent years, epigenetic memory systems have been developed based on DNA methylation and positive feedback systems. Achieving a robust design for these systems is generally a challenging and multifactorial task. We developed and validated a novel mathematical model to describe methylation-based epigenetic memory systems that capture switching dynamics of methylation levels and methyltransferase amounts induced by different inputs. A bifurcation analysis shows that the system operates in the bistable range, but in its current setup is not robust to changes in parameters. An expansion of the model captures heterogeneity of cell populations by accounting for distributed cell division rates. Simulations predict that the system is highly sensitive to variations in temperature, which affects cell division and the efficiency of the zinc finger repressor. A moderate decrease in temperature leads to a highly heterogeneous response to input signals and bistability on a single-cell level. The predictions of our model were confirmed by flow cytometry experiments conducted in this study. Overall, the results of our study give insights into the functional mechanisms of methylation-based memory systems and demonstrate that the switching dynamics can be highly sensitive to experimental conditions.
期刊介绍:
The FEBS Journal is an international journal devoted to the rapid publication of full-length papers covering a wide range of topics in any area of the molecular life sciences. The criteria for acceptance are originality and high quality research, which will provide novel perspectives in a specific area of research, and will be of interest to our broad readership.
The journal does not accept papers that describe the expression of specific genes and proteins or test the effect of a drug or reagent, without presenting any biological significance. Papers describing bioinformatics, modelling or structural studies of specific systems or molecules should include experimental data.