{"title":"Burst: real-time events burst detection in social text stream.","authors":"Tajinder Singh, Madhu Kumari","doi":"10.1007/s11227-021-03717-4","DOIUrl":null,"url":null,"abstract":"<p><p>Gigantic growth of social media and unbeatable trend of progress in the direction of the web seeking user's interests have generated a storm of social text streams. Seeking information to know the phenomenon of various events in the early stages is quite interesting. Various kinds of social media live streams attract users to participate in real-time events to become a part of an immense crowd. However, the vast amount of text is present on social media, the unnecessary information bogs a social text stream filtering to extract the appropriate topics and events effectively. Therefore, detecting, classifying, and identifying burst events is quite challenging due to the sparse and noisy text of Twitter. The researchers' significant open challenges are the effective cleaning and profound representation of the text stream data. This research article's main contribution is to provide a detailed study and explore bursty event detection in the social text stream. Thus, this work's main motive is to present a concise approach that classifies and detects the event keywords and maintains the record of the event based on related features. These features permit the approach to successfully determine the booming pattern of events scrupulously at different time span. Experiments are conducted and compared with the state-of-the-art methods, which reveals that the proposed approach is proficient to detect valuable patterns of interest and also achieve better scoresto extract burst events on social media posted by various users.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"77 10","pages":"11228-11256"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11227-021-03717-4","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-03717-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2
Abstract
Gigantic growth of social media and unbeatable trend of progress in the direction of the web seeking user's interests have generated a storm of social text streams. Seeking information to know the phenomenon of various events in the early stages is quite interesting. Various kinds of social media live streams attract users to participate in real-time events to become a part of an immense crowd. However, the vast amount of text is present on social media, the unnecessary information bogs a social text stream filtering to extract the appropriate topics and events effectively. Therefore, detecting, classifying, and identifying burst events is quite challenging due to the sparse and noisy text of Twitter. The researchers' significant open challenges are the effective cleaning and profound representation of the text stream data. This research article's main contribution is to provide a detailed study and explore bursty event detection in the social text stream. Thus, this work's main motive is to present a concise approach that classifies and detects the event keywords and maintains the record of the event based on related features. These features permit the approach to successfully determine the booming pattern of events scrupulously at different time span. Experiments are conducted and compared with the state-of-the-art methods, which reveals that the proposed approach is proficient to detect valuable patterns of interest and also achieve better scoresto extract burst events on social media posted by various users.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.