Comprehensive identification of somatic nucleotide variants in human brain tissue.

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Genome Biology Pub Date : 2021-03-29 DOI:10.1186/s13059-021-02285-3
Yifan Wang, Taejeong Bae, Jeremy Thorpe, Maxwell A Sherman, Attila G Jones, Sean Cho, Kenneth Daily, Yanmei Dou, Javier Ganz, Alon Galor, Irene Lobon, Reenal Pattni, Chaggai Rosenbluh, Simone Tomasi, Livia Tomasini, Xiaoxu Yang, Bo Zhou, Schahram Akbarian, Laurel L Ball, Sara Bizzotto, Sarah B Emery, Ryan Doan, Liana Fasching, Yeongjun Jang, David Juan, Esther Lizano, Lovelace J Luquette, John B Moldovan, Rujuta Narurkar, Matthew T Oetjens, Rachel E Rodin, Shobana Sekar, Joo Heon Shin, Eduardo Soriano, Richard E Straub, Weichen Zhou, Andrew Chess, Joseph G Gleeson, Tomas Marquès-Bonet, Peter J Park, Mette A Peters, Jonathan Pevsner, Christopher A Walsh, Daniel R Weinberger, Flora M Vaccarino, John V Moran, Alexander E Urban, Jeffrey M Kidd, Ryan E Mills, Alexej Abyzov
{"title":"Comprehensive identification of somatic nucleotide variants in human brain tissue.","authors":"Yifan Wang, Taejeong Bae, Jeremy Thorpe, Maxwell A Sherman, Attila G Jones, Sean Cho, Kenneth Daily, Yanmei Dou, Javier Ganz, Alon Galor, Irene Lobon, Reenal Pattni, Chaggai Rosenbluh, Simone Tomasi, Livia Tomasini, Xiaoxu Yang, Bo Zhou, Schahram Akbarian, Laurel L Ball, Sara Bizzotto, Sarah B Emery, Ryan Doan, Liana Fasching, Yeongjun Jang, David Juan, Esther Lizano, Lovelace J Luquette, John B Moldovan, Rujuta Narurkar, Matthew T Oetjens, Rachel E Rodin, Shobana Sekar, Joo Heon Shin, Eduardo Soriano, Richard E Straub, Weichen Zhou, Andrew Chess, Joseph G Gleeson, Tomas Marquès-Bonet, Peter J Park, Mette A Peters, Jonathan Pevsner, Christopher A Walsh, Daniel R Weinberger, Flora M Vaccarino, John V Moran, Alexander E Urban, Jeffrey M Kidd, Ryan E Mills, Alexej Abyzov","doi":"10.1186/s13059-021-02285-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells.</p><p><strong>Results: </strong>Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees.</p><p><strong>Conclusions: </strong>This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"22 1","pages":"92"},"PeriodicalIF":12.3000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8006362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-021-02285-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells.

Results: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees.

Conclusions: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全面鉴定人类脑组织中的体细胞核苷酸变异。
背景:在 DNA 复制、DNA 修复和其他细胞过程中发生的合子后突变会导致体细胞嵌合。体细胞嵌合是包括癌症在内的多种疾病的既定病因。然而,检测非癌症体细胞组织DNA中的镶嵌变异是一项重大挑战,尤其是当变异只存在于一小部分细胞中时:在此,脑体细胞镶嵌网络开展了一项协调的多机构研究,以检验现有方法在DNA混合实验中检测模拟体细胞单核苷酸变异(SNV)的能力,从一个神经畸形个体的背外侧前额叶皮层、其他脑区、硬脑膜和硬脑膜成纤维细胞中生成多个重复的全基因组测序数据,设计发现体细胞SNV的策略,并应用各种方法验证体细胞SNV。通过这些努力,我们鉴定出了 43 个真正的体细胞 SNV,其变异等位基因分数从 ~ 0.005 到 ~ 0.28 不等。在这些结果的指导下,我们设计了从人类基因组可访问部分的 250× 全基因组测序数据中调用镶嵌 SNV 的最佳方法,其特异性和灵敏度达到了 90%。最后,我们证明了对来自单个个体的多个批量 DNA 样本进行分析可以重建早期发育细胞系树:本研究为检测非癌症组织中的体细胞SNV提供了一套统一的最佳方法。这些数据和方法可供科学界免费使用,可作为评估体细胞SNV对神经精神疾病影响的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
期刊最新文献
Genetic-by-age interaction analyses on complex traits in UK Biobank and their potential to identify effects on longitudinal trait change. Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates. Seqrutinator: scrutiny of large protein superfamily sequence datasets for the identification and elimination of non-functional homologues. Systemic interindividual DNA methylation variants in cattle share major hallmarks with those in humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1