Immune cells enhance Zika virus-mediated neurologic dysfunction in brain of mice with humanized immune systems

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2021-04-03 DOI:10.1002/dneu.22820
Anthony N. van den Pol, Xue Zhang, Stephen E. Maher, Alfred L. M. Bothwell
{"title":"Immune cells enhance Zika virus-mediated neurologic dysfunction in brain of mice with humanized immune systems","authors":"Anthony N. van den Pol,&nbsp;Xue Zhang,&nbsp;Stephen E. Maher,&nbsp;Alfred L. M. Bothwell","doi":"10.1002/dneu.22820","DOIUrl":null,"url":null,"abstract":"<p>Zika virus (ZIKV) can generate a number of neurological dysfunctions in infected humans. Here, we tested the potential of human immune cells to protect against ZIKV infection in genetically humanized MISTRG mice. FACS analysis showed robust reconstitution of the mouse spleen with human T cells. Peripheral ZIKV inoculation resulted in infection within the brains of MISTRG mice. Mice that were reconstituted with human peripheral blood mononuclear cells (PBMC) showed a more rapid lethal response to ZIKV than the control mice lacking these immune cells. Immunocytochemical analysis of T cell markers CD3, CD45, or CD8 showed strong T cell presence in the brain, together with robust infection by ZIKV particularly in the excitatory pyramidal and granule neurons of the hippocampus. Infection was also found in cortex, striatum, the dopamine neurons of the substantia nigra, and other brain loci. Infection was considerably less in other regions such as the septum and hypothalamus. These data support the perspective that, rather than exerting a protective function, T cells may underlie some ZIKV-mediated neuropathology in the brain.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/dneu.22820","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22820","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Zika virus (ZIKV) can generate a number of neurological dysfunctions in infected humans. Here, we tested the potential of human immune cells to protect against ZIKV infection in genetically humanized MISTRG mice. FACS analysis showed robust reconstitution of the mouse spleen with human T cells. Peripheral ZIKV inoculation resulted in infection within the brains of MISTRG mice. Mice that were reconstituted with human peripheral blood mononuclear cells (PBMC) showed a more rapid lethal response to ZIKV than the control mice lacking these immune cells. Immunocytochemical analysis of T cell markers CD3, CD45, or CD8 showed strong T cell presence in the brain, together with robust infection by ZIKV particularly in the excitatory pyramidal and granule neurons of the hippocampus. Infection was also found in cortex, striatum, the dopamine neurons of the substantia nigra, and other brain loci. Infection was considerably less in other regions such as the septum and hypothalamus. These data support the perspective that, rather than exerting a protective function, T cells may underlie some ZIKV-mediated neuropathology in the brain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫细胞增强寨卡病毒介导的小鼠大脑神经功能障碍与人源化免疫系统
寨卡病毒(ZIKV)可在受感染的人身上产生许多神经功能障碍。在这里,我们测试了人类免疫细胞在基因人源化的mistral小鼠中保护免受ZIKV感染的潜力。FACS分析显示用人T细胞重建了小鼠脾脏。外周寨卡病毒接种导致MISTRG小鼠脑内感染。用人外周血单个核细胞(PBMC)重组的小鼠比缺乏这些免疫细胞的对照小鼠对ZIKV的致命反应更快。T细胞标记物CD3、CD45或CD8的免疫细胞化学分析显示,大脑中有很强的T细胞存在,同时寨卡病毒强烈感染,特别是在兴奋性锥体和海马颗粒神经元中。在皮层、纹状体、黑质多巴胺神经元和其他大脑部位也发现了感染。在其他区域,如中隔和下丘脑,感染要少得多。这些数据支持这样一种观点,即T细胞可能是寨卡病毒介导的大脑神经病理的基础,而不是发挥保护功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Issue Information Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome Dysregulation of parvalbumin expression and neurotransmitter imbalance in the auditory cortex of the BTBR mouse model of autism spectrum disorder Efficient Dlx2-mediated astrocyte-to-neuron conversion and inhibition of neuroinflammation by NeuroD1 Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1