Multi-Staged Data-Integrated Multi-Omics Analysis for Symptom Science Research.

IF 1.9 4区 医学 Q2 NURSING Biological research for nursing Pub Date : 2021-10-01 Epub Date: 2021-04-08 DOI:10.1177/10998004211003980
Carolyn S Harris, Christine A Miaskowski, Anand A Dhruva, Janine Cataldo, Kord M Kober
{"title":"Multi-Staged Data-Integrated Multi-Omics Analysis for Symptom Science Research.","authors":"Carolyn S Harris,&nbsp;Christine A Miaskowski,&nbsp;Anand A Dhruva,&nbsp;Janine Cataldo,&nbsp;Kord M Kober","doi":"10.1177/10998004211003980","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of omics approaches into symptom science research can provide researchers with information about the molecular mechanisms that underlie symptoms. Most of the omics analyses in symptom science have used a single omics approach. Therefore, these analyses are limited by the information contained within a specific omics domain (e.g., genomics and inherited variations, transcriptomics and gene function). A multi-staged data-integrated multi-omics (MS-DIMO) analysis integrates multiple types of omics data in a single study. With this integration, a MS-DIMO analysis can provide a more comprehensive picture of the complex biological mechanisms that underlie symptoms. The results of a MS-DIMO analysis can be used to refine mechanistic hypotheses and/or discover therapeutic targets for specific symptoms. The purposes of this paper are to: (1) describe a MS-DIMO analysis using \"Symptom X\" as an example; (2) discuss a number of challenges associated with specific omics analyses and how a MS-DIMO analysis can address them; (3) describe the various orders of omics data that can be used in a MS-DIMO analysis; (4) describe omics analysis tools; and (5) review case exemplars of MS-DIMO analyses in symptom science. This paper provides information on how a MS-DIMO analysis can strengthen symptom science research through the prioritization of functional genes and biological processes associated with a specific symptom.</p>","PeriodicalId":8997,"journal":{"name":"Biological research for nursing","volume":"23 4","pages":"596-607"},"PeriodicalIF":1.9000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10998004211003980","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological research for nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10998004211003980","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 6

Abstract

The incorporation of omics approaches into symptom science research can provide researchers with information about the molecular mechanisms that underlie symptoms. Most of the omics analyses in symptom science have used a single omics approach. Therefore, these analyses are limited by the information contained within a specific omics domain (e.g., genomics and inherited variations, transcriptomics and gene function). A multi-staged data-integrated multi-omics (MS-DIMO) analysis integrates multiple types of omics data in a single study. With this integration, a MS-DIMO analysis can provide a more comprehensive picture of the complex biological mechanisms that underlie symptoms. The results of a MS-DIMO analysis can be used to refine mechanistic hypotheses and/or discover therapeutic targets for specific symptoms. The purposes of this paper are to: (1) describe a MS-DIMO analysis using "Symptom X" as an example; (2) discuss a number of challenges associated with specific omics analyses and how a MS-DIMO analysis can address them; (3) describe the various orders of omics data that can be used in a MS-DIMO analysis; (4) describe omics analysis tools; and (5) review case exemplars of MS-DIMO analyses in symptom science. This paper provides information on how a MS-DIMO analysis can strengthen symptom science research through the prioritization of functional genes and biological processes associated with a specific symptom.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多阶段数据集成多组学分析用于症状科学研究。
将组学方法纳入症状科学研究可以为研究人员提供有关症状背后的分子机制的信息。大多数症状科学组学分析都使用单一组学方法。因此,这些分析受到特定组学领域(例如,基因组学和遗传变异、转录组学和基因功能)所包含的信息的限制。多阶段数据集成多组学(MS-DIMO)分析在单个研究中集成了多种类型的组学数据。通过这种整合,MS-DIMO分析可以更全面地了解症状背后的复杂生物学机制。MS-DIMO分析的结果可用于完善机制假设和/或发现针对特定症状的治疗靶点。本文的目的是:(1)以“症状X”为例描述MS-DIMO分析;(2)讨论与特定组学分析相关的一些挑战,以及MS-DIMO分析如何解决这些挑战;(3)描述可用于MS-DIMO分析的组学数据的不同顺序;(4)描述组学分析工具;(5)回顾MS-DIMO分析在症状科学中的应用实例。本文提供了MS-DIMO分析如何通过对与特定症状相关的功能基因和生物学过程进行优先排序来加强症状科学研究的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
4.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: Biological Research For Nursing (BRN) is a peer-reviewed quarterly journal that helps nurse researchers, educators, and practitioners integrate information from many basic disciplines; biology, physiology, chemistry, health policy, business, engineering, education, communication and the social sciences into nursing research, theory and clinical practice. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
Epigenetic Aging Associations With Psychoneurological Symptoms and Social Functioning in Adults With Sickle Cell Disease Caffeine and Sleep in Preventing Post-spinal Headache: Which One is More Effective? The Impact of Resistance Exercise Training on Glycemic Control Among Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials 2023 International Society of Nurses in Genetics (ISONG) World Congress: Meeting Overview Wii Fit-Based Biofeedback Rehabilitation Among Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1