{"title":"Addressing consistency and demand uncertainty in the Home Care planning problem.","authors":"Paola Cappanera, Maria Grazia Scutellà","doi":"10.1007/s10696-021-09412-z","DOIUrl":null,"url":null,"abstract":"<p><p>Optimizing Home Care Services is receiving a great attention in Operations Research. We address arrival time consistency, person-oriented consistency and demand uncertainty in Home Care, while jointly optimizing assignment, scheduling and routing decisions over a multiple-day time horizon. Consistent time schedules are very much appreciated by patients who, in this setting, are very sensitive to changes in their daily routines. Also person-oriented consistency positively impacts on service quality, guaranteeing that almost the same set of caregivers take care of a patient in the planning horizon. Demand uncertainty plays a pivotal role, too, since both the set of patients under treatment and their care plan can change over time. To the best of our knowledge, this is the first paper dealing with all these aspects in Home Care via a robust approach. We present a mathematical model to the problem, and a pattern-based algorithmic framework to solve it. The framework is derived from the model via decomposition, i.e. suitably fixing the scheduling decisions through the concept of pattern. We propose alternative policies to generate patterns, taking into account consistency and demand uncertainty; when embedding them in the general framework, alternative pattern based algorithms originate. The results of a rich computational experience show that introducing consistency and demand uncertainty in pattern generation policies is crucial to efficiently compute very good quality solutions, in terms of robustness and balancing of the caregiver workload. In addition, a comparison with a simpler model, where no kind of consistency is imposed, shows the importance of considering consistency in pursuing a valuable patient-centered perspective, with a positive effect also on the efficiency of the solution approach.</p>","PeriodicalId":50441,"journal":{"name":"Flexible Services and Manufacturing Journal","volume":"34 1","pages":"1-39"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10696-021-09412-z","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible Services and Manufacturing Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10696-021-09412-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 6
Abstract
Optimizing Home Care Services is receiving a great attention in Operations Research. We address arrival time consistency, person-oriented consistency and demand uncertainty in Home Care, while jointly optimizing assignment, scheduling and routing decisions over a multiple-day time horizon. Consistent time schedules are very much appreciated by patients who, in this setting, are very sensitive to changes in their daily routines. Also person-oriented consistency positively impacts on service quality, guaranteeing that almost the same set of caregivers take care of a patient in the planning horizon. Demand uncertainty plays a pivotal role, too, since both the set of patients under treatment and their care plan can change over time. To the best of our knowledge, this is the first paper dealing with all these aspects in Home Care via a robust approach. We present a mathematical model to the problem, and a pattern-based algorithmic framework to solve it. The framework is derived from the model via decomposition, i.e. suitably fixing the scheduling decisions through the concept of pattern. We propose alternative policies to generate patterns, taking into account consistency and demand uncertainty; when embedding them in the general framework, alternative pattern based algorithms originate. The results of a rich computational experience show that introducing consistency and demand uncertainty in pattern generation policies is crucial to efficiently compute very good quality solutions, in terms of robustness and balancing of the caregiver workload. In addition, a comparison with a simpler model, where no kind of consistency is imposed, shows the importance of considering consistency in pursuing a valuable patient-centered perspective, with a positive effect also on the efficiency of the solution approach.
期刊介绍:
The mission of the Flexible Services and Manufacturing Journal, formerly known as the International Journal of Flexible Manufacturing Systems, is to publish original, high-quality research papers in the field of services and manufacturing management. All aspects in this field including the interface between engineering and management, the design and analysis of service and manufacturing systems as well as operational planning and decision support are covered. The journal seeks papers that have a clear focus on the applicability in the real business world including all kinds of services and manufacturing industries, e.g. in logistics, transportation, health care, manufacturing-based services, production planning and control, and supply chain management. Flexibility should be understood in its widest sense as a system’s ability to respond to changes in the environment through improved decision making and business development procedures and enabling IT solutions.