Genetic variation for expression of the sex determination pathway genes in Drosophila melanogaster.

Aaron M Tarone, Yaseen M Nasser, Sergey V Nuzhdin
{"title":"Genetic variation for expression of the sex determination pathway genes in Drosophila melanogaster.","authors":"Aaron M Tarone,&nbsp;Yaseen M Nasser,&nbsp;Sergey V Nuzhdin","doi":"10.1017/S0016672305007706","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence polymorphisms result in phenotypic variation through the pathways of interacting genes and their products. We focused on transcript-level variation in the splicing pathway for sex determination - a model network defining downstream morphological characters that are dimorphic between males and females. Expression of Sex lethal, transformer, transformer2, doublesex, intersex and hermaphrodite was assayed with quantitative RT-PCR in 0- to 1-day-old adult males and females of 36 Drosophila melanogaster inbred lines. Abundant genetic variation in the transcript levels was found for all genes. Sex-specific splices had high concentrations in the appropriate sex. In the other sex, low but detectable concentrations were also observed. Abundances of splices strongly co-varied between sexes among genotypes, with little genetic variation strictly limited to one sex. The level of sexually dimorphic Yolk protein1 expression - an immediate downstream target of the pathway - was modelled as the target phenotype of the upstream sex determination pathway. Substantial genetic variation in this phenotype in males was explained by leaky splicing of female-specific transcripts. If higher transcript levels of the appropriate isoform of sex determination genes are beneficial in a sex, then stronger leakiness of the inappropriate transcript might be deleterious, perhaps contributing to the fitness trade-offs previously observed between the sexes.</p>","PeriodicalId":12777,"journal":{"name":"Genetical research","volume":"86 1","pages":"31-40"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0016672305007706","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0016672305007706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Sequence polymorphisms result in phenotypic variation through the pathways of interacting genes and their products. We focused on transcript-level variation in the splicing pathway for sex determination - a model network defining downstream morphological characters that are dimorphic between males and females. Expression of Sex lethal, transformer, transformer2, doublesex, intersex and hermaphrodite was assayed with quantitative RT-PCR in 0- to 1-day-old adult males and females of 36 Drosophila melanogaster inbred lines. Abundant genetic variation in the transcript levels was found for all genes. Sex-specific splices had high concentrations in the appropriate sex. In the other sex, low but detectable concentrations were also observed. Abundances of splices strongly co-varied between sexes among genotypes, with little genetic variation strictly limited to one sex. The level of sexually dimorphic Yolk protein1 expression - an immediate downstream target of the pathway - was modelled as the target phenotype of the upstream sex determination pathway. Substantial genetic variation in this phenotype in males was explained by leaky splicing of female-specific transcripts. If higher transcript levels of the appropriate isoform of sex determination genes are beneficial in a sex, then stronger leakiness of the inappropriate transcript might be deleterious, perhaps contributing to the fitness trade-offs previously observed between the sexes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑腹果蝇性别决定途径基因表达的遗传变异。
序列多态性通过基因及其产物相互作用的途径导致表型变异。我们关注的是性别决定剪接途径的转录水平变化,这是一个定义雄性和雌性之间二态的下游形态特征的模型网络。用定量RT-PCR方法检测了36个黑腹果蝇自交系0 ~ 1日龄雄性和雌性的性致死性、互感器、互感器2、双性、双性和雌雄同体基因的表达。所有基因在转录水平上存在丰富的遗传变异。性别特异性剪接在合适的性别中有很高的浓度。在另一种性别中,也观察到低但可检测的浓度。在基因型中,剪接的丰度在两性之间有很强的共变异,很少有遗传变异严格限于一种性别。两性二态卵黄蛋白1的表达水平——该途径的直接下游目标——被建模为上游性别决定途径的目标表型。这种表型在男性中的大量遗传变异可以通过女性特异性转录物的漏剪接来解释。如果性别决定基因的合适同种异构体的较高转录水平对一个性别是有益的,那么不合适转录物的更强的泄漏可能是有害的,这可能有助于先前观察到的性别之间的适应性权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wild populations are smaller than we think: a commentary on 'Effective population size/adult population size ratios in wildlife: a review' by Richard Frankham. Impact of selection on effective population size: a commentary on 'Inbreeding in artificial selection programmes' by Alan Robertson. Hybrid dysgenesis: from darkness into light: a commentary on 'Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility' by William R. Engels. A model in two acts: a commentary on 'A model detectable alleles in a finite population' by Timoko Ohta and Motoo Kimura. Estimating the recombination parameter: a commentary on 'Estimating the recombination parameter of a finite population model without selection' by Richard R. Hudson.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1