μ-Borole triple-decker complexes as catalysts for oxidative coupling of benzoic acid with alkynes. Structure of a hybrid rhodacyclopentadienyl/borole triple-decker complex
Dmitry A. Loginov, Dmitry V. Muratov, Yulia V. Nelyubina, Julia Laskova, Alexander R. Kudinov
{"title":"μ-Borole triple-decker complexes as catalysts for oxidative coupling of benzoic acid with alkynes. Structure of a hybrid rhodacyclopentadienyl/borole triple-decker complex","authors":"Dmitry A. Loginov, Dmitry V. Muratov, Yulia V. Nelyubina, Julia Laskova, Alexander R. Kudinov","doi":"10.1016/j.molcata.2016.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Reaction of dimethylamine adduct of 1-methyl-3-borolene with [(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>RhCl]<sub>2</sub> gives the triple-decker complex (η-C<sub>4</sub>H<sub>4</sub>BMe)Rh(μ-η:η-C<sub>4</sub>H<sub>4</sub>BMe)Rh(η-C<sub>4</sub>H<sub>4</sub>BMe) (<strong>1a</strong>) in 62% yield and trace amount (<1%) of the hybrid rhodacyclopentadienyl/borole triple-decker complex (η-C<sub>4</sub>H<sub>4</sub>BMe)Rh(μ-η:η-C<sub>4</sub>H<sub>4</sub>Rh{(μ-η:η-C<sub>4</sub>H<sub>4</sub>BMe)Rh(η-C<sub>4</sub>H<sub>4</sub>BMe)})Rh(η-C<sub>4</sub>H<sub>4</sub>BMe) (<strong>2</strong>). The structure of <strong>2</strong> was determined by X-ray diffraction. In the presence of Cu(OAc)<sub>2</sub>, <strong>1a</strong> and (η-C<sub>4</sub>H<sub>4</sub>BPh)Rh(μ-η:η-C<sub>4</sub>H<sub>4</sub>BPh)Rh(η-C<sub>4</sub>H<sub>4</sub>BPh) (<strong>1b</strong>) catalyze the oxidative coupling of benzoic acid with diphenylacetylene selectively giving 1,2,3,4-tetraphenylnaphtalene in 50–90% yields. Analogous reactions of benzoic acid with 1-phenyl-1-butyne catalyzed by <strong>1a</strong> and [CpRhI<sub>2</sub>]<sub>2</sub> regioselectively give 1,4-diethyl-2,3-diphenylnaphthalene. The related dicationic triple-decker complexes [(9-SMe<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>)Rh(μ-η:η-C<sub>4</sub>H<sub>4</sub>BPh)Rh(9-SMe<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>)]<sup>2+</sup> (<strong>3</strong>) and [Cp*Rh(μ-η:η-C<sub>4</sub>H<sub>4</sub>BPh)IrCp*]<sup>2+</sup> (<strong>4</strong>) were also tested as catalysts.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 393-397"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.07.004","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916302540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Reaction of dimethylamine adduct of 1-methyl-3-borolene with [(C2H4)2RhCl]2 gives the triple-decker complex (η-C4H4BMe)Rh(μ-η:η-C4H4BMe)Rh(η-C4H4BMe) (1a) in 62% yield and trace amount (<1%) of the hybrid rhodacyclopentadienyl/borole triple-decker complex (η-C4H4BMe)Rh(μ-η:η-C4H4Rh{(μ-η:η-C4H4BMe)Rh(η-C4H4BMe)})Rh(η-C4H4BMe) (2). The structure of 2 was determined by X-ray diffraction. In the presence of Cu(OAc)2, 1a and (η-C4H4BPh)Rh(μ-η:η-C4H4BPh)Rh(η-C4H4BPh) (1b) catalyze the oxidative coupling of benzoic acid with diphenylacetylene selectively giving 1,2,3,4-tetraphenylnaphtalene in 50–90% yields. Analogous reactions of benzoic acid with 1-phenyl-1-butyne catalyzed by 1a and [CpRhI2]2 regioselectively give 1,4-diethyl-2,3-diphenylnaphthalene. The related dicationic triple-decker complexes [(9-SMe2-7,8-C2B9H10)Rh(μ-η:η-C4H4BPh)Rh(9-SMe2-7,8-C2B9H10)]2+ (3) and [Cp*Rh(μ-η:η-C4H4BPh)IrCp*]2+ (4) were also tested as catalysts.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.