{"title":"Lung disease and brain development.","authors":"Petra Huppi, Stephane Sizonenko, Maurizio Amato","doi":"10.1159/000092865","DOIUrl":null,"url":null,"abstract":"<p><p>With the technical progress made in fetal and neonatal intensive care, perinatal mortality has decreased by 25% over the last decade and has expanded the surviving premature population. Prematurity drastically changes the environment of the developing organism. Striking evidence from a number of disciplines has focused attention on the interplay between the developing organism and the circumstances in which it finds itself. The environmental event during a sensitive period in development, induces injury and/or biological adaptations that lead to altered differentiation of tissues. The organism can express specific adaptive responses to its environment which include short-term changes in physiology as well as long-term adjustments. This review addresses these short-term as well as longer-term changes occurring in lung and brain tissue and illustrates how these changes can be studied using advanced imaging techniques such as magnetic resonance imaging</p>","PeriodicalId":9091,"journal":{"name":"Biology of the neonate","volume":"89 4","pages":"284-97"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000092865","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of the neonate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000092865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/6/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
With the technical progress made in fetal and neonatal intensive care, perinatal mortality has decreased by 25% over the last decade and has expanded the surviving premature population. Prematurity drastically changes the environment of the developing organism. Striking evidence from a number of disciplines has focused attention on the interplay between the developing organism and the circumstances in which it finds itself. The environmental event during a sensitive period in development, induces injury and/or biological adaptations that lead to altered differentiation of tissues. The organism can express specific adaptive responses to its environment which include short-term changes in physiology as well as long-term adjustments. This review addresses these short-term as well as longer-term changes occurring in lung and brain tissue and illustrates how these changes can be studied using advanced imaging techniques such as magnetic resonance imaging