NTP technical report on the toxicology and carcinogenesis studies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (CAS No. 1746-01-6) in female Harlan Sprague-Dawley rats (Gavage Studies).

Q4 Medicine National Toxicology Program technical report series Pub Date : 2006-04-01
{"title":"NTP technical report on the toxicology and carcinogenesis studies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (CAS No. 1746-01-6) in female Harlan Sprague-Dawley rats (Gavage Studies).","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>DIOXIN TOXIC EQUIVALENCY FACTOR EVALUATION OVERVIEW: Polyhalogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have the ability to bind to and activate the ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR). Structurally related compounds that bind to the AhR and exhibit biological actions similar to TCDD are commonly referred to as \"dioxin-like compounds\" (DLCs). Ambient human exposure to DLCs occurs through the ingestion of foods containing residues of DLCs that bioconcentrate through the food chain. Due to their lipophilicity and persistence, once internalized, they accumulate in body tissue, mainly adipose, resulting in chronic lifetime human exposure. Since human exposure to DLCs always involves a complex mixture, the toxic equivalency factor (TEF) methodology has been developed as a mathematical tool to assess the health risk posed by complex mixtures of these compounds. The TEF methodology is a relative potency scheme that ranks the dioxin-like activity of a compound relative to TCDD, which is the most potent congener. This allows for the estimation of the potential dioxin-like activity of a mixture of chemicals based on a common mechanism of action involving an initial binding of DLCs to the AhR. The toxic equivalency of DLCs was nominated for evaluation because of the widespread human exposure to DLCs and the lack of data on the adequacy of the TEF methodology for predicting relative potency for cancer risk. To address this, the National Toxicology Program conducted a series of 2-year bioassays in female Harlan Sprague-Dawley rats to evaluate the chronic toxicity and carcinogenicity of DLCs and structurally related polychlorinated biphenyls (PCBs) and mixtures of these compounds. TCDD is not manufactured commercially other than for scientific research purposes. The main sources of TCDD releases into the environment are from combustion and incineration; metal smelting, refining, and processing; chemical manufacturing and processing; biological and photochemical processes; and existing reservoir sources that reflect past releases. TCDD (dioxin) was selected for study by the National Toxicology Program as a part of the dioxin TEF evaluation to assess the cancer risk posed by complex mixtures of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and PCBs. The dioxin TEF evaluation includes conducting multiple 2-year rat bioassays to evaluate the relative chronic toxicity and carcinogenicity of DLCs, structurally related PCBs, and mixtures of these compounds. While one of the aims of the dioxin TEF evaluation was a comparative analysis across studies, in this Technical Report, only the TCDD results are presented and discussed. TCDD was included because it is the reference compound for the dioxin TEF methodology. Female Harlan Sprague-Dawley rats were administered TCDD (at least 98% pure) in corn oil:acetone (99:1) by gavage for 14, 31, or 53 weeks or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, L5178Y mouse lymphoma cells, cultured Chinese hamster ovary cells, Drosophila melanogaster, and mouse bone marrow cells. 2-YEAR STUDY: Groups of 81 or 82 female rats were administered 3, 10, 22, 46, or 100 ng TCDD/kg body weight in corn oil:acetone (99:1) by gavage, 5 days per week, for up to 105 weeks; a group of 81 vehicle control female rats received the corn oil/acetone vehicle alone. Up to 10 rats per group were evaluated at 14, 31, or 53 weeks. A stop-exposure group of 50 female rats was administered 100 ng/kg TCDD in corn oil:acetone (99:1) by gavage for 30 weeks and then just the vehicle for the remainder of the study. Survival of dosed groups was similar to that of the vehicle control group. Mean body weights of 100 ng/kg core study and stop-exposure groups were less than those of the vehicle control group after week 13 of the study. Mean body weights of 46 ng/kg rats were less than those of the vehicle controls during year 2 of the study, and those of 22 ng/kg rats were less than those of the vehicle controls the last 10 weeks of the study. THYROID HORMONE CONCENTRATIONS: Alterations in serum thyroid hormone levels were evaluated at the 14-, 31- and 53-week interim evaluations. At 14 weeks, there were significant decreases in serum total and free thyroxine (T4) levels and increases in serum total triiodothyronine (T3) and thyroid stimulating hormone (TSH). At 31 weeks, there were significant decreases in serum total and free T4 levels and increases in serum total T3 but no significant effect on TSH. At 53 weeks, there were significant decreases in serum total T4 levels and increases in serum total T3. There were no significant effects on total T4 or TSH levels. HEPATIC CELL PROLIFERATION DATA: To evaluate hepatocyte replication, analysis of labeling of replicating hepatocytes with 5-bromo-2'-deoxyuridine was conducted at the 14-, 31-, and 53-week interim evaluations. The hepatocellular labeling index was significantly higher in the 22 ng/kg group compared to vehicle controls at 14 weeks. At the 31-week interim evaluation, the labeling indices in hepatocytes were significantly higher in all dosed groups than in the vehicle controls. At 53 weeks, labeling indices were significantly higher in the 46 and 100 ng/kg groups than in the vehicle controls. CYTOCHROME P450 ENZYME ACTIVITIES: To evaluate the expression of known dioxin-responsive genes, CYP1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) activity and CYP1A2-associated acetanilide-4-hydroxylase (A4H) activity were evaluated at 14, 31, and 53 weeks. In addition, pentoxyresorufin-O-deethylase (PROD) activity was analyzed. Hepatic EROD, PROD, and A4H activities were significantly higher in all dosed groups relative to vehicle controls at the 14-, 31-, and 53-week interim evaluations. Pulmonary EROD was also significantly higher in all dosed groups compared to vehicle controls at 14, 31, and 53 weeks. DETERMINATIONS OF TCDD CONCENTRATIONS IN TISSUES: The tissue disposition of TCDD was analyzed in the liver, lung, fat, and blood of all animals in each group at the 14-, 31-, and 53-week interim evaluations and in 10 animals per group at the end of the 2-year study (105 weeks). The highest concentrations of TCDD were observed in the liver, followed by fat tissue. Liver and fat tissue concentrations of TCDD increased with increasing doses of TCDD. No measurable concentrations of TCDD were observed in blood from vehicle control or treated rats at any of the interim evaluations. Mean levels of TCDD in the liver and fat in the 100 ng/kg group at the end of the 2-year study were 9.3 and 3.2 ng/g, respectively. In liver tissue from the stop-exposure group, TCDD concentrations were slightly higher than those observed in the 3 ng/kg group. In the stop-exposure group, TCDD concentrations in fat were below the limits of quantitation. PATHOLOGY AND STATISTICAL ANALYSES: Absolute and/or relative liver weights were increased at 14, 31, and 53 weeks, with more severe effects occurring in the higher dosed groups. Increased liver weights correlated with increased incidences of hepatocyte hypertrophy at 14, 31, and 53 weeks. Exposure led to a treatment-related increase in hepatic toxicity with a broad spectrum of lesions. Incidences and severities of lesions increased at higher doses and longer durations of exposure. The earliest effects were increased incidences and severities of hepatocyte hypertrophy at 14 weeks. At 2 years, there was a significant increase in toxic hepatopathy characterized by increased incidences of numerous nonneoplastic liver lesions including hepatocyte hypertrophy, multinucleated hepatocytes, altered hepatocellular foci, inflammation, pigmentation, diffuse fatty change, necrosis, portal fibrosis, oval cell hyperplasia, bile duct hyperplasia, bile duct cysts, cholangiofibrosis, and nodular hyperplasia At 2 years, the incidence of hepatocellular adenoma was significantly increased in the 100 ng/kg core study group. Dose-related increased incidences of cholangiocarcinoma were seen in core study rats administered 22 ng/kg or greater. The highest incidence of cholangiocarcinoma was seen in the 100 ng/kg core study group and included a significant number of animals with multiple cholangiocarcinomas. Two cholangiocarcinomas and two hepatocellular adenomas were seen in the 100 ng/kg stop-exposure group. Two hepatocholangiomas were seen in the 100 ng/kg core study group, and one cholangioma was seen in the 100 ng/kg stop-exposure group. In the lung, the incidence of cystic keratinizing epithelioma of the lung was significantly increased at 2 years in the 100 ng/kg core study group. Nonneoplastic effects in the lung included increased incidences of bronchiolar metaplasia. The incidence of gingival squamous cell carcinoma of the oral mucosa was significantly increased in the 100 ng/kg core study group at 2 years and was accompanied by an increased incidence of gingival squamous hyperplasia. At 2 years, the incidence of squamous cell carcinoma of the uterus in the 46 ng/kg group was significantly increased, and there were two squamous cell carcinomas in the 100 ng/kg stop-exposure group. At 2 years, one acinar adenoma and two acinar cell carcinomas of the pancreas were seen in the 100 ng/kg core study group; one acinar carcinoma was seen in the 100 ng/kg stop-exposure group. The incidences of acinar cell adenoma or carcinoma (combined) exceeded the historical vehicle control range. Nonneoplastic effects in the lung included acinar cytoplasmic vacuolization, chronic active inflammation, acinar atrophy, and arterial chronic active inflammation. (ABSTRACT TRUNCATED)</p>","PeriodicalId":19036,"journal":{"name":"National Toxicology Program technical report series","volume":" 521","pages":"4-232"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Toxicology Program technical report series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

DIOXIN TOXIC EQUIVALENCY FACTOR EVALUATION OVERVIEW: Polyhalogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have the ability to bind to and activate the ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR). Structurally related compounds that bind to the AhR and exhibit biological actions similar to TCDD are commonly referred to as "dioxin-like compounds" (DLCs). Ambient human exposure to DLCs occurs through the ingestion of foods containing residues of DLCs that bioconcentrate through the food chain. Due to their lipophilicity and persistence, once internalized, they accumulate in body tissue, mainly adipose, resulting in chronic lifetime human exposure. Since human exposure to DLCs always involves a complex mixture, the toxic equivalency factor (TEF) methodology has been developed as a mathematical tool to assess the health risk posed by complex mixtures of these compounds. The TEF methodology is a relative potency scheme that ranks the dioxin-like activity of a compound relative to TCDD, which is the most potent congener. This allows for the estimation of the potential dioxin-like activity of a mixture of chemicals based on a common mechanism of action involving an initial binding of DLCs to the AhR. The toxic equivalency of DLCs was nominated for evaluation because of the widespread human exposure to DLCs and the lack of data on the adequacy of the TEF methodology for predicting relative potency for cancer risk. To address this, the National Toxicology Program conducted a series of 2-year bioassays in female Harlan Sprague-Dawley rats to evaluate the chronic toxicity and carcinogenicity of DLCs and structurally related polychlorinated biphenyls (PCBs) and mixtures of these compounds. TCDD is not manufactured commercially other than for scientific research purposes. The main sources of TCDD releases into the environment are from combustion and incineration; metal smelting, refining, and processing; chemical manufacturing and processing; biological and photochemical processes; and existing reservoir sources that reflect past releases. TCDD (dioxin) was selected for study by the National Toxicology Program as a part of the dioxin TEF evaluation to assess the cancer risk posed by complex mixtures of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and PCBs. The dioxin TEF evaluation includes conducting multiple 2-year rat bioassays to evaluate the relative chronic toxicity and carcinogenicity of DLCs, structurally related PCBs, and mixtures of these compounds. While one of the aims of the dioxin TEF evaluation was a comparative analysis across studies, in this Technical Report, only the TCDD results are presented and discussed. TCDD was included because it is the reference compound for the dioxin TEF methodology. Female Harlan Sprague-Dawley rats were administered TCDD (at least 98% pure) in corn oil:acetone (99:1) by gavage for 14, 31, or 53 weeks or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, L5178Y mouse lymphoma cells, cultured Chinese hamster ovary cells, Drosophila melanogaster, and mouse bone marrow cells. 2-YEAR STUDY: Groups of 81 or 82 female rats were administered 3, 10, 22, 46, or 100 ng TCDD/kg body weight in corn oil:acetone (99:1) by gavage, 5 days per week, for up to 105 weeks; a group of 81 vehicle control female rats received the corn oil/acetone vehicle alone. Up to 10 rats per group were evaluated at 14, 31, or 53 weeks. A stop-exposure group of 50 female rats was administered 100 ng/kg TCDD in corn oil:acetone (99:1) by gavage for 30 weeks and then just the vehicle for the remainder of the study. Survival of dosed groups was similar to that of the vehicle control group. Mean body weights of 100 ng/kg core study and stop-exposure groups were less than those of the vehicle control group after week 13 of the study. Mean body weights of 46 ng/kg rats were less than those of the vehicle controls during year 2 of the study, and those of 22 ng/kg rats were less than those of the vehicle controls the last 10 weeks of the study. THYROID HORMONE CONCENTRATIONS: Alterations in serum thyroid hormone levels were evaluated at the 14-, 31- and 53-week interim evaluations. At 14 weeks, there were significant decreases in serum total and free thyroxine (T4) levels and increases in serum total triiodothyronine (T3) and thyroid stimulating hormone (TSH). At 31 weeks, there were significant decreases in serum total and free T4 levels and increases in serum total T3 but no significant effect on TSH. At 53 weeks, there were significant decreases in serum total T4 levels and increases in serum total T3. There were no significant effects on total T4 or TSH levels. HEPATIC CELL PROLIFERATION DATA: To evaluate hepatocyte replication, analysis of labeling of replicating hepatocytes with 5-bromo-2'-deoxyuridine was conducted at the 14-, 31-, and 53-week interim evaluations. The hepatocellular labeling index was significantly higher in the 22 ng/kg group compared to vehicle controls at 14 weeks. At the 31-week interim evaluation, the labeling indices in hepatocytes were significantly higher in all dosed groups than in the vehicle controls. At 53 weeks, labeling indices were significantly higher in the 46 and 100 ng/kg groups than in the vehicle controls. CYTOCHROME P450 ENZYME ACTIVITIES: To evaluate the expression of known dioxin-responsive genes, CYP1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) activity and CYP1A2-associated acetanilide-4-hydroxylase (A4H) activity were evaluated at 14, 31, and 53 weeks. In addition, pentoxyresorufin-O-deethylase (PROD) activity was analyzed. Hepatic EROD, PROD, and A4H activities were significantly higher in all dosed groups relative to vehicle controls at the 14-, 31-, and 53-week interim evaluations. Pulmonary EROD was also significantly higher in all dosed groups compared to vehicle controls at 14, 31, and 53 weeks. DETERMINATIONS OF TCDD CONCENTRATIONS IN TISSUES: The tissue disposition of TCDD was analyzed in the liver, lung, fat, and blood of all animals in each group at the 14-, 31-, and 53-week interim evaluations and in 10 animals per group at the end of the 2-year study (105 weeks). The highest concentrations of TCDD were observed in the liver, followed by fat tissue. Liver and fat tissue concentrations of TCDD increased with increasing doses of TCDD. No measurable concentrations of TCDD were observed in blood from vehicle control or treated rats at any of the interim evaluations. Mean levels of TCDD in the liver and fat in the 100 ng/kg group at the end of the 2-year study were 9.3 and 3.2 ng/g, respectively. In liver tissue from the stop-exposure group, TCDD concentrations were slightly higher than those observed in the 3 ng/kg group. In the stop-exposure group, TCDD concentrations in fat were below the limits of quantitation. PATHOLOGY AND STATISTICAL ANALYSES: Absolute and/or relative liver weights were increased at 14, 31, and 53 weeks, with more severe effects occurring in the higher dosed groups. Increased liver weights correlated with increased incidences of hepatocyte hypertrophy at 14, 31, and 53 weeks. Exposure led to a treatment-related increase in hepatic toxicity with a broad spectrum of lesions. Incidences and severities of lesions increased at higher doses and longer durations of exposure. The earliest effects were increased incidences and severities of hepatocyte hypertrophy at 14 weeks. At 2 years, there was a significant increase in toxic hepatopathy characterized by increased incidences of numerous nonneoplastic liver lesions including hepatocyte hypertrophy, multinucleated hepatocytes, altered hepatocellular foci, inflammation, pigmentation, diffuse fatty change, necrosis, portal fibrosis, oval cell hyperplasia, bile duct hyperplasia, bile duct cysts, cholangiofibrosis, and nodular hyperplasia At 2 years, the incidence of hepatocellular adenoma was significantly increased in the 100 ng/kg core study group. Dose-related increased incidences of cholangiocarcinoma were seen in core study rats administered 22 ng/kg or greater. The highest incidence of cholangiocarcinoma was seen in the 100 ng/kg core study group and included a significant number of animals with multiple cholangiocarcinomas. Two cholangiocarcinomas and two hepatocellular adenomas were seen in the 100 ng/kg stop-exposure group. Two hepatocholangiomas were seen in the 100 ng/kg core study group, and one cholangioma was seen in the 100 ng/kg stop-exposure group. In the lung, the incidence of cystic keratinizing epithelioma of the lung was significantly increased at 2 years in the 100 ng/kg core study group. Nonneoplastic effects in the lung included increased incidences of bronchiolar metaplasia. The incidence of gingival squamous cell carcinoma of the oral mucosa was significantly increased in the 100 ng/kg core study group at 2 years and was accompanied by an increased incidence of gingival squamous hyperplasia. At 2 years, the incidence of squamous cell carcinoma of the uterus in the 46 ng/kg group was significantly increased, and there were two squamous cell carcinomas in the 100 ng/kg stop-exposure group. At 2 years, one acinar adenoma and two acinar cell carcinomas of the pancreas were seen in the 100 ng/kg core study group; one acinar carcinoma was seen in the 100 ng/kg stop-exposure group. The incidences of acinar cell adenoma or carcinoma (combined) exceeded the historical vehicle control range. Nonneoplastic effects in the lung included acinar cytoplasmic vacuolization, chronic active inflammation, acinar atrophy, and arterial chronic active inflammation. (ABSTRACT TRUNCATED)

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
国家毒理学规划关于2,3,7,8-四氯二苯并-对二恶英(TCDD) (CAS No. 1746-01-6)在雌性Harlan Sprague-Dawley大鼠中的毒理学和致癌性研究的技术报告(灌胃研究)。
二恶英毒性等效因子评价综述:2,3,7,8-四氯二苯并-对二恶英(TCDD)等多卤代芳烃具有结合并激活配体激活转录因子芳烃受体(AhR)的能力。与AhR结合并表现出与TCDD相似的生物作用的结构相关化合物通常被称为“类二恶英化合物”(dlc)。人类环境暴露于dlc是通过摄入含有dlc残留物的食物而发生的,dlc残留物通过食物链进行生物浓缩。由于它们的亲脂性和持久性,一旦内化,它们就会在身体组织中积累,主要是脂肪,导致慢性终身暴露于人体。由于人类接触dlc总是涉及一种复杂的混合物,因此开发了毒性等效系数(TEF)方法,作为评估这些化合物的复杂混合物所构成的健康风险的数学工具。TEF方法是一种相对效价方案,它将一种化合物的类二恶英活性相对于TCDD进行排序,TCDD是最有效的同源物。这样就可以根据一种涉及dlc与AhR初始结合的共同作用机制,对化学混合物的潜在二恶英样活性进行估计。dlc的毒性当量被提名进行评估,因为人类广泛接触dlc,并且缺乏TEF方法预测癌症风险相对效力的充分性的数据。为了解决这个问题,国家毒理学计划对雌性哈伦斯普拉格-道利大鼠进行了一系列为期两年的生物测定,以评估dlc和结构相关的多氯联苯(PCBs)及其混合物的慢性毒性和致癌性。除科学研究用途外,TCDD并非商业生产。排放到环境中的TCDD的主要来源是燃烧和焚烧;金属冶炼、精炼、加工;化工制造加工;生物和光化学过程;以及反映过去释放量的现有水库来源。作为二恶英TEF评估的一部分,美国国家毒理学计划选择了TCDD(二恶英)作为研究对象,以评估多氯二苯并二恶英(pcdd)、多氯二苯并呋喃(pcdf)和多氯联苯的复杂混合物所造成的癌症风险。二恶英TEF评估包括进行多次为期2年的大鼠生物测定,以评估dlc、结构相关的多氯联苯以及这些化合物的混合物的相对慢性毒性和致癌性。虽然二恶英TEF评价的目的之一是对各研究进行比较分析,但在本技术报告中,只介绍和讨论了二恶英TEF的结果。列入TCDD是因为它是二恶英TEF方法的参考化合物。雌性Harlan Sprague-Dawley大鼠灌胃TCDD(至少98%纯)玉米油:丙酮(99:1),持续14、31、53周或2年。对鼠伤寒沙门菌、L5178Y小鼠淋巴瘤细胞、培养的中国仓鼠卵巢细胞、黑腹果蝇和小鼠骨髓细胞进行遗传毒理学研究。2年研究:每组81或82只雌性大鼠分别灌胃3、10、22、46或100 ng TCDD/kg体重玉米油:丙酮(99:1),每周5天,持续至105周;对照组雌性大鼠81只,单独给予玉米油/丙酮对照。每组最多10只大鼠在14、31或53周时进行评估。停止暴露组50只雌性大鼠,在玉米油:丙酮(99:1)中灌胃给予100 ng/kg TCDD,持续30周,然后仅作为载药进行其余研究。给药组的生存期与载药对照组相似。研究第13周后,100 ng/kg核心研究组和停止暴露组的平均体重低于车辆对照组。在研究的第2年,46 ng/kg大鼠的平均体重低于载药对照组,在研究的最后10周,22 ng/kg大鼠的平均体重低于载药对照组。甲状腺激素浓度:在14周、31周和53周的中期评估中评估血清甲状腺激素水平的变化。14周时,血清总甲状腺素(T4)和游离甲状腺素(T4)水平显著降低,血清总三碘甲状腺原氨酸(T3)和促甲状腺激素(TSH)水平显著升高。在31周时,血清总T4和游离T4水平显著降低,血清总T3水平显著升高,但对TSH无显著影响。在53周时,血清总T4水平显著降低,血清总T3水平显著升高。对总T4和TSH水平没有显著影响。数据:为了评估肝细胞的复制,在14周、31周和53周的中期评估中进行了5-溴-2'-脱氧尿苷标记复制肝细胞的分析。 在14周时,22 ng/kg组的肝细胞标记指数显著高于对照组。在31周的中期评估中,所有给药组的肝细胞标记指数均显著高于对照。在53周时,46和100 ng/kg组的标记指数显著高于对照组。细胞色素P450酶活性:为了评估已知二二英反应基因的表达,在14、31和53周时评估cyp1a1相关的7-乙氧基间苯二酚- o -去乙基酶(EROD)活性和cyp1a2相关的乙酰苯胺-4-羟化酶(A4H)活性。此外,还分析了戊氧基间苯二酚- o -去乙基酶(PROD)的活性。在第14、31和53周的中期评估中,所有给药组的肝脏EROD、PROD和A4H活性均显著高于对照。在14周、31周和53周时,与对照组相比,所有给药组的肺EROD也显著升高。组织中TCDD浓度的测定:在14周、31周和53周的中期评估中,分析每组所有动物的肝脏、肺、脂肪和血液中TCDD的组织分布,在2年研究结束时(105周),每组10只动物分析TCDD的组织分布。肝脏中TCDD的浓度最高,其次是脂肪组织。肝脏和脂肪组织TCDD浓度随TCDD剂量的增加而增加。在任何中期评估中,在对照或治疗大鼠的血液中均未观察到可测量的TCDD浓度。在为期2年的研究结束时,100 ng/kg组肝脏和脂肪中的TCDD平均水平分别为9.3和3.2 ng/g。在停止接触组的肝组织中,TCDD浓度略高于3 ng/kg组。停止暴露组脂肪中TCDD浓度低于定量限值。病理和统计分析:绝对和/或相对肝脏重量在14、31和53周时增加,高剂量组出现更严重的影响。在14、31和53周时,肝脏重量增加与肝细胞肥大的发生率增加相关。暴露导致与治疗相关的肝毒性增加,并伴有广谱病变。剂量越高,暴露时间越长,病变的发生率和严重程度越高。最早的影响是14周时肝细胞肥大的发生率和严重程度增加。2年时,中毒性肝病的发生率显著增加,其特征是许多非肿瘤性肝脏病变的发生率增加,包括肝细胞肥大、多核肝细胞、肝细胞灶改变、炎症、色素沉着、弥漫性脂肪改变、坏死、门脉纤维化、卵形细胞增生、胆管增生、胆管囊肿、胆管纤维化和结节性增生。100 ng/kg核心研究组肝细胞腺瘤的发生率显著增加。在给予22 ng/kg或更高剂量的核心研究大鼠中,胆管癌的发生率与剂量相关。胆管癌发病率最高的是100 ng/kg核心研究组,其中包括大量患有多发性胆管癌的动物。100 ng/kg停止暴露组出现2例胆管癌和2例肝细胞腺瘤。100 ng/kg核心组出现2例肝胆管瘤,100 ng/kg停止暴露组出现1例胆管瘤。在肺部,100 ng/kg核心研究组肺囊性角化上皮瘤的发生率在2年时显著增加。肺的非肿瘤性影响包括细支气管化生的发生率增加。100 ng/kg核心研究组2年时口腔黏膜牙龈鳞状细胞癌的发生率显著增加,并伴有牙龈鳞状增生的发生率增加。在2年时,46 ng/kg组子宫鳞状细胞癌的发病率显著增加,100 ng/kg停止暴露组有2例鳞状细胞癌。2年后,100 ng/kg核心研究组出现胰腺腺泡腺瘤1例,腺泡细胞癌2例;100 ng/kg停止暴露组见1例腺泡癌。腺泡细胞瘤或癌(合并)的发生率超过历史载具对照范围。肺的非肿瘤性影响包括腺泡细胞质空泡化、慢性活动性炎症、腺泡萎缩和动脉慢性活动性炎症。(抽象截断)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Toxicology and carcinogenesis study of triclosan administered dermally to B6C3F1/N mice. Toxicology and carcinogenesis studies of black cohosh root extract (CASRN 84776-26-1) administered by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats and female B6C3F1/N mice. Toxicology and carcinogenesis studies of an isomeric mixture of tris(chloropropyl) phosphate administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice. Toxicology and carcinogenesis studies of di(2-ethylhexyl) phthalate administered in feed to Sprague Dawley (Hsd:Sprague Dawley SD) rats. Toxicology and carcinogenesis studies of sodium tungstate dihydrate in Sprague Dawley (Hsd:Sprague Dawley SD) rats and B6C3F1/N mice (drinking water studies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1