{"title":"Mapping QTL for Biomass Yield and Its Components in Rice (Oryza sativa L.)","authors":"LIU Gui-Fu , YANG Jian , ZHU Jun","doi":"10.1016/S0379-4172(06)60090-5","DOIUrl":null,"url":null,"abstract":"<div><p>Addicive effects, additive by additive epistatic effects, and their environmental interactions of QTLs are important genetic components of quantitative traits. Genetic architecture underlying rice biomass yield and its two component traits (straw yield and grain yield) were analyzed for a population of 125 DH lines from an inter-subspecific cross of IR64/Azucena. The mixed-model based composite interval mapping approach (MCIM) was used to detect QTLs, There were 12 QTLs detected with additive main effects, 27 QTLs involved in digenic interaction with <em>aa</em> and/or <em>aae</em> effects, and 18 QTLs affected by environments with <em>ae</em> and/or <em>aae</em> effects. It was revealed that epistatic effects and <em>QE</em> interaction effects existed on biomass yield and its component traits in rice. In addition, the genetic basis of relationships among these traits were investigated. Four QTLs and one pair of epistatic QTLs were detected to be responsible for the positive correlation between biomass yield and straw yield. Three QTLs might be responsible for the negative correlation between straw yield and grain yield. This result could partially explain the genetic basis of correlation among the three traits, and provide useful information for genetic improvement of these traits by marker-assisted selection.</p></div>","PeriodicalId":100017,"journal":{"name":"Acta Genetica Sinica","volume":"33 7","pages":"Pages 607-616"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0379-4172(06)60090-5","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Genetica Sinica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379417206600905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Addicive effects, additive by additive epistatic effects, and their environmental interactions of QTLs are important genetic components of quantitative traits. Genetic architecture underlying rice biomass yield and its two component traits (straw yield and grain yield) were analyzed for a population of 125 DH lines from an inter-subspecific cross of IR64/Azucena. The mixed-model based composite interval mapping approach (MCIM) was used to detect QTLs, There were 12 QTLs detected with additive main effects, 27 QTLs involved in digenic interaction with aa and/or aae effects, and 18 QTLs affected by environments with ae and/or aae effects. It was revealed that epistatic effects and QE interaction effects existed on biomass yield and its component traits in rice. In addition, the genetic basis of relationships among these traits were investigated. Four QTLs and one pair of epistatic QTLs were detected to be responsible for the positive correlation between biomass yield and straw yield. Three QTLs might be responsible for the negative correlation between straw yield and grain yield. This result could partially explain the genetic basis of correlation among the three traits, and provide useful information for genetic improvement of these traits by marker-assisted selection.