Michael G. Aberle , Ulrike Troitzsch , James Robertson , Jurian A. Hoogewerff
{"title":"Conjunctive use of mineralogy and elemental composition for empirical forensic provenancing of topsoil from Canberra, Australia","authors":"Michael G. Aberle , Ulrike Troitzsch , James Robertson , Jurian A. Hoogewerff","doi":"10.1016/j.forc.2023.100524","DOIUrl":null,"url":null,"abstract":"<div><p>The capability to spatially triage geographical areas as low and high interest has the potential to provide valuable information as forensic intelligence to law enforcement operations, and related provenancing applications. Among others, our previously published work has largely been based on the elemental composition of topsoil samples, omitting other potentially useful compositional characteristics, such as mineralogy, that have proven valuable in forensic casework discriminations. In this contribution, a total of 334 topsoil (0–5 cm sampling depth; 0–75 µm fraction) samples collected from the Canberra region in Australia, were selected from a larger collection (n = 685) and their bulk mineralogy determined using X-ray powder diffraction (XRPD). Utilising an existing casework technique for discriminating soils by mineralogy, a total of twelve diagnostic peaks were selected representing commonly occurring minerals. Peak intensities were normalised relative to the sum of their intensities and used to create an indicative mineralogy dataset for the study region. Based on an existing algorithm for assigning investigative analytical similarities from overlapping areas between two Cauchy distributions, the provenance was estimated for thirteen blind topsoil samples. Provenance maps based on the mineralogy were subsequently combined with earlier elemental-based predictions, incorporating contrasting discriminatory capabilities from both techniques. Results indicate the mineralogical component of topsoils can provide accurate provenance predictions, and when combined with those based on the elemental composition, can further delineate areas as low interest that otherwise would not necessarily be differentiated from one technique alone.</p></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"36 ","pages":"Article 100524"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468170923000607","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The capability to spatially triage geographical areas as low and high interest has the potential to provide valuable information as forensic intelligence to law enforcement operations, and related provenancing applications. Among others, our previously published work has largely been based on the elemental composition of topsoil samples, omitting other potentially useful compositional characteristics, such as mineralogy, that have proven valuable in forensic casework discriminations. In this contribution, a total of 334 topsoil (0–5 cm sampling depth; 0–75 µm fraction) samples collected from the Canberra region in Australia, were selected from a larger collection (n = 685) and their bulk mineralogy determined using X-ray powder diffraction (XRPD). Utilising an existing casework technique for discriminating soils by mineralogy, a total of twelve diagnostic peaks were selected representing commonly occurring minerals. Peak intensities were normalised relative to the sum of their intensities and used to create an indicative mineralogy dataset for the study region. Based on an existing algorithm for assigning investigative analytical similarities from overlapping areas between two Cauchy distributions, the provenance was estimated for thirteen blind topsoil samples. Provenance maps based on the mineralogy were subsequently combined with earlier elemental-based predictions, incorporating contrasting discriminatory capabilities from both techniques. Results indicate the mineralogical component of topsoils can provide accurate provenance predictions, and when combined with those based on the elemental composition, can further delineate areas as low interest that otherwise would not necessarily be differentiated from one technique alone.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.