Rosalba Alonso Rodríguez, José Luis Ochoa, Manuel Uribe Alcocer
{"title":"Grazing of heterotrophic dinoflagellate Noctiluca scintillans (Mcartney) Kofoid on Gymnodinium catenatum Graham.","authors":"Rosalba Alonso Rodríguez, José Luis Ochoa, Manuel Uribe Alcocer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A dinoflagellate bloom (\"red tide\" event) dominated by the toxic Gymnodinium catenatum Graham (Gymnodiniales, Dinophyceae; 99.7%) and the noxious Noctiluca scintillans (Mcartney) Kofoid (Noctilucaceae, Dinophyceae; 0.3%) was observed in Bahia de Mazatlán Bay, México, on 24-26 January 2000. Photographic and microscopic analysis of samples during such an event, allowed us to collect evidence of a marked The particularity of grazing of G. catrenatum by by N. scintillans cells, suggesting a mechanism of \"biocontrol\" between these species that may contribute to attenuate a potentially toxic phenomenon under natural conditions.</p>","PeriodicalId":21464,"journal":{"name":"Revista latinoamericana de microbiologia","volume":"47 1-2","pages":"6-10"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista latinoamericana de microbiologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A dinoflagellate bloom ("red tide" event) dominated by the toxic Gymnodinium catenatum Graham (Gymnodiniales, Dinophyceae; 99.7%) and the noxious Noctiluca scintillans (Mcartney) Kofoid (Noctilucaceae, Dinophyceae; 0.3%) was observed in Bahia de Mazatlán Bay, México, on 24-26 January 2000. Photographic and microscopic analysis of samples during such an event, allowed us to collect evidence of a marked The particularity of grazing of G. catrenatum by by N. scintillans cells, suggesting a mechanism of "biocontrol" between these species that may contribute to attenuate a potentially toxic phenomenon under natural conditions.