Bleaching with lignin-oxidizing enzymes.

Pratima Bajpai, Aradhna Anand, Pramod K Bajpai
{"title":"Bleaching with lignin-oxidizing enzymes.","authors":"Pratima Bajpai,&nbsp;Aradhna Anand,&nbsp;Pramod K Bajpai","doi":"10.1016/S1387-2656(06)12010-4","DOIUrl":null,"url":null,"abstract":"<p><p>General concern about the environmental impact of chlorine bleaching effluents has led to a trend towards elementary chlorine-free or totally chlorine free bleaching methods. Considerable interest has been focused on the use of biotechnology in pulp bleaching, as large number of microbes and the enzymes produced by them are known to be capable of preferential degradation of native lignin and complete degradation of wood. Enzymes of the hemicellulolytic type, particularly xylan-attacking enzymes xylanases are now used commercially in the mills for pulp treatment and subsequent incorporation into bleach sequences. Certain white-rot fungi can delignify Kraft pulps increasing their brightness and their responsiveness to brightening with chemicals. The fungal treatments are too slow but the enzymes produced from the fungi can also delignify pulps and these enzymatic processes are likely to be easier to optimize and apply than the fungal treatments. This article presents an overview of the developments in the application of lignin-oxidizing enzymes in bleaching of chemical pulps. The present knowledge of the mechanisms on the action of enzymes as well as the practical results and advantages obtained on the laboratory and industrial scale are discussed.</p>","PeriodicalId":79566,"journal":{"name":"Biotechnology annual review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1387-2656(06)12010-4","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology annual review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S1387-2656(06)12010-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

General concern about the environmental impact of chlorine bleaching effluents has led to a trend towards elementary chlorine-free or totally chlorine free bleaching methods. Considerable interest has been focused on the use of biotechnology in pulp bleaching, as large number of microbes and the enzymes produced by them are known to be capable of preferential degradation of native lignin and complete degradation of wood. Enzymes of the hemicellulolytic type, particularly xylan-attacking enzymes xylanases are now used commercially in the mills for pulp treatment and subsequent incorporation into bleach sequences. Certain white-rot fungi can delignify Kraft pulps increasing their brightness and their responsiveness to brightening with chemicals. The fungal treatments are too slow but the enzymes produced from the fungi can also delignify pulps and these enzymatic processes are likely to be easier to optimize and apply than the fungal treatments. This article presents an overview of the developments in the application of lignin-oxidizing enzymes in bleaching of chemical pulps. The present knowledge of the mechanisms on the action of enzymes as well as the practical results and advantages obtained on the laboratory and industrial scale are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用木质素氧化酶漂白。
对氯漂白废水对环境影响的普遍关注导致了基本无氯或完全无氯漂白方法的趋势。生物技术在纸浆漂白中的应用引起了相当大的兴趣,因为已知大量微生物及其产生的酶能够优先降解天然木质素并完全降解木材。半纤维素水解型酶,特别是攻击木聚糖的酶,木聚糖酶现在在工业上用于纸浆处理和随后加入漂白序列。某些白腐真菌可以使硫酸盐纸浆脱木质素,增加其亮度和对化学增白剂的反应。真菌处理太慢,但真菌产生的酶也可以使纸浆脱木质素,这些酶的过程可能比真菌处理更容易优化和应用。本文综述了木质素氧化酶在化学纸浆漂白中的应用进展。讨论了酶作用机理的现有知识,以及在实验室和工业规模上取得的实际成果和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The social network of a cell: recent advances in interactome mapping. Gene expression microarray data analysis demystified. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering. Ethnomedicines and ethnomedicinal phytophores against herpesviruses. Free radical processes in green tea polyphenols (GTP) investigated by electron paramagnetic resonance (EPR) spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1