Transient receptor potential channels and intracellular signaling.

Geoffrey E Woodard, Stewart O Sage, Juan A Rosado
{"title":"Transient receptor potential channels and intracellular signaling.","authors":"Geoffrey E Woodard,&nbsp;Stewart O Sage,&nbsp;Juan A Rosado","doi":"10.1016/S0074-7696(07)56002-X","DOIUrl":null,"url":null,"abstract":"<p><p>The transient receptor potential (TRP) family of ion channels is composed of more than 50 functionally versatile cation-permeant ion channels expressed in most mammalian cell types. Considerable research has been brought to bear on the members of this family, especially with regard to their possible role as store-operated calcium channels, although studies have provided evidence that TRP channels exhibit a number of regulatory and functional aspects. Endogenous and transiently expressed TRP channels can be activated by different mechanisms grouped into four main categories: receptor-operated activation, store depletion-mediated activation, ligand-induced activation, and direct activation. This article reviews the biochemical characteristics of the different members of the TRP family and summarizes their involvement in a number of physiological events ranging from sensory transduction to development, which might help in understanding the relationship between TRP channel dysfunction and the development of several diseases.</p>","PeriodicalId":54930,"journal":{"name":"International Review of Cytology-A Survey of Cell Biology","volume":"256 ","pages":"35-67"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0074-7696(07)56002-X","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Cytology-A Survey of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0074-7696(07)56002-X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The transient receptor potential (TRP) family of ion channels is composed of more than 50 functionally versatile cation-permeant ion channels expressed in most mammalian cell types. Considerable research has been brought to bear on the members of this family, especially with regard to their possible role as store-operated calcium channels, although studies have provided evidence that TRP channels exhibit a number of regulatory and functional aspects. Endogenous and transiently expressed TRP channels can be activated by different mechanisms grouped into four main categories: receptor-operated activation, store depletion-mediated activation, ligand-induced activation, and direct activation. This article reviews the biochemical characteristics of the different members of the TRP family and summarizes their involvement in a number of physiological events ranging from sensory transduction to development, which might help in understanding the relationship between TRP channel dysfunction and the development of several diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瞬时受体电位通道与细胞内信号传导。
瞬时受体电位(TRP)离子通道家族由50多种功能多样的阳离子渗透离子通道组成,在大多数哺乳动物细胞类型中表达。尽管研究已经提供证据表明TRP通道具有许多调节和功能方面,但对该家族成员的研究已经相当多,特别是关于它们作为储存操作钙通道的可能作用。内源性和瞬时表达的TRP通道可以通过不同的机制激活,分为四大类:受体操作激活、储存耗尽介导的激活、配体诱导的激活和直接激活。本文综述了TRP家族不同成员的生化特性,并总结了它们参与从感觉转导到发育的一系列生理事件,这可能有助于理解TRP通道功能障碍与几种疾病发展之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
The polymeric immunoglobulin receptor Cross-talk among integrin, cadherin, and growth factor receptor: roles of nectin and nectin-like molecule. Neural stem cells in the mammalian brain. Mechanisms of mitotic spindle assembly and function. Multiple actions of secretin in the human body.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1