{"title":"Using artificial intelligence to bring evidence-based medicine a step closer to making the individual difference.","authors":"B Sissons, W A Gray, A Bater, D Morrey","doi":"10.1080/14639230601097804","DOIUrl":null,"url":null,"abstract":"<p><p>The vision of evidence-based medicine is that of experienced clinicians systematically using the best research evidence to meet the individual patient's needs. This vision remains distant from clinical reality, as no complete methodology exists to apply objective, population-based research evidence to the needs of an individual real-world patient. We describe an approach, based on techniques from machine learning, to bridge this gap between evidence and individual patients in oncology. We examine existing proposals for tackling this gap and the relative benefits and challenges of our proposed, k-nearest-neighbour-based, approach.</p>","PeriodicalId":80069,"journal":{"name":"Medical informatics and the Internet in medicine","volume":"32 1","pages":"11-8"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14639230601097804","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical informatics and the Internet in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14639230601097804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The vision of evidence-based medicine is that of experienced clinicians systematically using the best research evidence to meet the individual patient's needs. This vision remains distant from clinical reality, as no complete methodology exists to apply objective, population-based research evidence to the needs of an individual real-world patient. We describe an approach, based on techniques from machine learning, to bridge this gap between evidence and individual patients in oncology. We examine existing proposals for tackling this gap and the relative benefits and challenges of our proposed, k-nearest-neighbour-based, approach.