Shah Ali Ul Qader, Afsheen Aman, Noman Syed, Saeeda Bano, Abid Azhar
{"title":"Characterization of dextransucrase immobilized on calcium alginate beads from Leuconostoc mesenteroides PCSIR-4.","authors":"Shah Ali Ul Qader, Afsheen Aman, Noman Syed, Saeeda Bano, Abid Azhar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Immobilization of dextransucrase from Leuconostoc mesenteroides PCSIR-4 on alginate is optimized for application in the production of dextran from sucrose. Dextransucrase was partially purified by ethanol upto 2.5 fold. Properties of dextransucrase were less affected by immobilization on alginate beads from soluble enzyme. Highest activities of both soluble and immobilized dextransucrase found to be at 35 degrees C and optimum pH for activity remain 5.00. Substrate maxima for immobilized enzyme changed from 125 mg/ml to 200 mg/ml. Incubation time for enzyme-substrate reaction for maximum enzyme activity was increased from 15 minutes to 60 minutes in case of immobilized enzyme. Maximum stability of immobilized dextransucrase was achieved at 25 degrees C with respect to time.</p>","PeriodicalId":22527,"journal":{"name":"The Italian journal of biochemistry","volume":"56 2","pages":"158-62"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Italian journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Immobilization of dextransucrase from Leuconostoc mesenteroides PCSIR-4 on alginate is optimized for application in the production of dextran from sucrose. Dextransucrase was partially purified by ethanol upto 2.5 fold. Properties of dextransucrase were less affected by immobilization on alginate beads from soluble enzyme. Highest activities of both soluble and immobilized dextransucrase found to be at 35 degrees C and optimum pH for activity remain 5.00. Substrate maxima for immobilized enzyme changed from 125 mg/ml to 200 mg/ml. Incubation time for enzyme-substrate reaction for maximum enzyme activity was increased from 15 minutes to 60 minutes in case of immobilized enzyme. Maximum stability of immobilized dextransucrase was achieved at 25 degrees C with respect to time.