Sabine Matallana-Surget, Fabien Joux, Philippe Lebaron, Ricardo Cavicchioli
{"title":"[Isolation and characterization of marine oligotrophic bacteria].","authors":"Sabine Matallana-Surget, Fabien Joux, Philippe Lebaron, Ricardo Cavicchioli","doi":"10.1051/jbio:2007005","DOIUrl":null,"url":null,"abstract":"<p><p>A significant part of the world ocean is characterized by low absolute nutrients and chlorophyll concentrations. In these oligotrophic environments, bacteria are very abundant and play a vital role in the remineralization of the dissolved organic matter. Bacteria adapted to oligotrophic waters differ from those adapted to richer environments by some genetic and metabolic characteristics. Culture techniques in bacteriology are based on rich media and do not allow the growth of most marine bacteria. New techniques have been developed for the culture of oligotrophic bacteria, which allow to isolate unknown bacteria. Pelagibacter ubique and Sphingopyxis alaskensis belong to these bacteria recently isolated from the marine environment and their study yielded better understanding of how marine bacteria adapt to oligotrophic conditions.</p>","PeriodicalId":80018,"journal":{"name":"Journal de la Societe de biologie","volume":"201 1","pages":"41-50"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/jbio:2007005","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de la Societe de biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jbio:2007005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A significant part of the world ocean is characterized by low absolute nutrients and chlorophyll concentrations. In these oligotrophic environments, bacteria are very abundant and play a vital role in the remineralization of the dissolved organic matter. Bacteria adapted to oligotrophic waters differ from those adapted to richer environments by some genetic and metabolic characteristics. Culture techniques in bacteriology are based on rich media and do not allow the growth of most marine bacteria. New techniques have been developed for the culture of oligotrophic bacteria, which allow to isolate unknown bacteria. Pelagibacter ubique and Sphingopyxis alaskensis belong to these bacteria recently isolated from the marine environment and their study yielded better understanding of how marine bacteria adapt to oligotrophic conditions.