Cortical potential imaging of movement-related potentials using parametric Wiener filter in realistic-shaped head model.

Junichi Hori, Bin He
{"title":"Cortical potential imaging of movement-related potentials using parametric Wiener filter in realistic-shaped head model.","authors":"Junichi Hori,&nbsp;Bin He","doi":"10.1109/IEMBS.2006.259801","DOIUrl":null,"url":null,"abstract":"<p><p>Suitable spatial filters were explored for inverse estimation of cortical potential imaging from the scalp electroencephalogram. The effects of incorporating signal and noise covariance into inverse procedures were examined by computer simulations and experimental study. The parametric Wiener filter (PWF) was applied to an inhomogeneous three-sphere head model under various signal and noise conditions. We also examined estimation methods for the signal covariance in PWF. The present simulation results suggest that the PWF with modified matrix transformation method has better performance. The proposed methods were applied to self-paced movement-related potentials In order to identify the anatomic substrate locations of neural generators in realistic head model. The proposed methods demonstrated that the contralateral premotor cortex was preponderantly activated In relation to movement performance.</p>","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":" ","pages":"3662-5"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IEMBS.2006.259801","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2006.259801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suitable spatial filters were explored for inverse estimation of cortical potential imaging from the scalp electroencephalogram. The effects of incorporating signal and noise covariance into inverse procedures were examined by computer simulations and experimental study. The parametric Wiener filter (PWF) was applied to an inhomogeneous three-sphere head model under various signal and noise conditions. We also examined estimation methods for the signal covariance in PWF. The present simulation results suggest that the PWF with modified matrix transformation method has better performance. The proposed methods were applied to self-paced movement-related potentials In order to identify the anatomic substrate locations of neural generators in realistic head model. The proposed methods demonstrated that the contralateral premotor cortex was preponderantly activated In relation to movement performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数维纳滤波在真实头部模型中运动相关电位的皮质电位成像。
探索了合适的空间滤波器用于头皮脑电图皮层电位成像的逆估计。通过计算机模拟和实验研究验证了将信噪协方差纳入逆过程的效果。将参数维纳滤波(PWF)应用于不同信噪条件下的非均匀三球水头模型。我们还研究了PWF中信号协方差的估计方法。仿真结果表明,采用改进矩阵变换方法的PWF具有更好的性能。将所提出的方法应用于自定节奏运动相关电位,以确定真实头部模型中神经发生器的解剖基底位置。所提出的方法表明,对侧运动前皮层在运动表现方面处于优势激活状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Rapid Label-free DNA Quantification by Multi-frequency Impedance Sensing on a Chip. A Comparison of 1-D and 2-D Deep Convolutional Neural Networks in ECG Classification Brain Morphometry Analysis with Surface Foliation Theory Low-Cost, USB Connected and Multi-Purpose Biopotential Recording System. A Fast Respiratory Rate Estimation Method using Joint Sparse Signal Reconstruction based on Regularized Sparsity Adaptive Matching Pursuit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1