Fuzzy expert systems for sequential pattern recognition for patient status monitoring in operating room.

Joel Xue, Michael Krajnak
{"title":"Fuzzy expert systems for sequential pattern recognition for patient status monitoring in operating room.","authors":"Joel Xue,&nbsp;Michael Krajnak","doi":"10.1109/IEMBS.2006.259266","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present several fuzzy inference systems for monitoring patient status in an operating room. The algorithms used include recursive fuzzy inference (RFIS), and non-recursive with sequential patterns as inputs. The RFIS algorithm combines current patient status data with previous output of the inference system, therefore is able to reinforce the current finding based on previous sequential system output. The results show that the RFIS system can be tuned towards higher sensitivity for more critical status, while generating smoother inference output.</p>","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":" ","pages":"4671-4"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IEMBS.2006.259266","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2006.259266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we present several fuzzy inference systems for monitoring patient status in an operating room. The algorithms used include recursive fuzzy inference (RFIS), and non-recursive with sequential patterns as inputs. The RFIS algorithm combines current patient status data with previous output of the inference system, therefore is able to reinforce the current finding based on previous sequential system output. The results show that the RFIS system can be tuned towards higher sensitivity for more critical status, while generating smoother inference output.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手术室病人状态监测的顺序模式识别模糊专家系统。
在本文中,我们提出了几个模糊推理系统,以监测病人的状态在手术室。使用的算法包括递归模糊推理(RFIS)和以序列模式作为输入的非递归算法。RFIS算法将当前患者状态数据与推理系统的先前输出相结合,因此能够基于先前的顺序系统输出来强化当前的发现。结果表明,RFIS系统可以在更关键的状态下提高灵敏度,同时产生更平滑的推理输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Rapid Label-free DNA Quantification by Multi-frequency Impedance Sensing on a Chip. A Comparison of 1-D and 2-D Deep Convolutional Neural Networks in ECG Classification Brain Morphometry Analysis with Surface Foliation Theory Low-Cost, USB Connected and Multi-Purpose Biopotential Recording System. A Fast Respiratory Rate Estimation Method using Joint Sparse Signal Reconstruction based on Regularized Sparsity Adaptive Matching Pursuit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1