fRMSDPred: predicting local RMSD between structural fragments using sequence information.

Huzefa Rangwala, George Karypis
{"title":"fRMSDPred: predicting local RMSD between structural fragments using sequence information.","authors":"Huzefa Rangwala,&nbsp;George Karypis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this paper focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior results compared to the profile-to-profile scoring schemes.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":" ","pages":"311-22"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this paper focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior results compared to the profile-to-profile scoring schemes.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
fRMSDPred:利用序列信息预测结构片段之间的局部RMSD。
通过在初始序列-结构比对中加入预测的结构信息,可以大大提高蛋白质结构预测的比较建模方法的有效性。受用于排列蛋白质结构的方法的启发,本文着重于开发用于估计一对蛋白质片段的RMSD值的机器学习方法。这些估计的片段级RMSD值可用于构建对齐,评估对齐的质量,并识别高质量的对齐片段。我们提出了一种算法来解决这个片段级RMSD预测问题,该算法使用基于支持向量回归和分类的监督学习框架,该框架结合了蛋白质谱、预测的二级结构、有效的信息编码方案和新的二阶成对指数核函数。我们的综合实证研究表明,与配置文件到配置文件的评分方案相比,效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Gene Discovery in the Human Malaria Parasite using Nucleosome Positioning Data. Estimating support for protein-protein interaction data with applications to function prediction. On the accurate construction of consensus genetic maps. Efficient haplotype inference from pedigrees with missing data using linear systems with disjoint-set data structures. Knowledge representation and data mining for biological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1