{"title":"Neuregulins and neuronal plasticity: possible relevance in schizophrenia.","authors":"Andrés Buonanno, Oh-Bin Kwon, Leqin Yan, Carmen Gonzalez, Marines Longart, Dax Hoffman, Detlef Vullhorst","doi":"10.1002/9780470751251.ch13","DOIUrl":null,"url":null,"abstract":"<p><p>Polymorphisms in the Neuregulin 1 (NRG1) and ErbB4 receptor genes have been associated with schizophrenia in numerous cohort and family studies, and biochemical measurements from postmortem prefrontal cortex homogenates suggest that NRG/ErbB signalling is altered in schizophrenia. Moreover, recent work from our group, and from others, indicates that NRG/ErbB signalling has a role in regulating glutamatergic transmission--an intriguing finding given that glutamatergic hypofunction has been proposed to be involved in the pathogenesis underlying schizophrenia. Here we will provide a brief background of the complexity of the NRG/ErbB signalling system. We will then focus on how NRG1 reverses (depotentiates) long-term potentiation (LTP) at hippocampal Schaeffer collateral--CA1 glutamatergic synapses in the adult brain. Specifically, we found that NRG1 depotentiates LTP in an activity- and time-dependent manner. A role of endogenous NRG for regulating plasticity at hippocampal synapses is supported by experiments demonstrating that ErbB receptor antagonists completely block LTP depotentiation by brief theta-pulse stimuli, a subthreshold stimulus paradigm that reverses LTP in live animals. Preliminary results indicate that NRG1-mediated LTP depotentiation is NMDA receptor independent, and manifests as an internalization of GluR1-containing AMPA receptors. The importance of the NRG/ ErbB signalling pathway in regulating homeostasis at glutamatergic synapses, and its possible implications for schizophrenia, will be discussed.</p>","PeriodicalId":19323,"journal":{"name":"Novartis Foundation Symposium","volume":"289 ","pages":"165-77; discussion 177-9, 193-5"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novartis Foundation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470751251.ch13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Polymorphisms in the Neuregulin 1 (NRG1) and ErbB4 receptor genes have been associated with schizophrenia in numerous cohort and family studies, and biochemical measurements from postmortem prefrontal cortex homogenates suggest that NRG/ErbB signalling is altered in schizophrenia. Moreover, recent work from our group, and from others, indicates that NRG/ErbB signalling has a role in regulating glutamatergic transmission--an intriguing finding given that glutamatergic hypofunction has been proposed to be involved in the pathogenesis underlying schizophrenia. Here we will provide a brief background of the complexity of the NRG/ErbB signalling system. We will then focus on how NRG1 reverses (depotentiates) long-term potentiation (LTP) at hippocampal Schaeffer collateral--CA1 glutamatergic synapses in the adult brain. Specifically, we found that NRG1 depotentiates LTP in an activity- and time-dependent manner. A role of endogenous NRG for regulating plasticity at hippocampal synapses is supported by experiments demonstrating that ErbB receptor antagonists completely block LTP depotentiation by brief theta-pulse stimuli, a subthreshold stimulus paradigm that reverses LTP in live animals. Preliminary results indicate that NRG1-mediated LTP depotentiation is NMDA receptor independent, and manifests as an internalization of GluR1-containing AMPA receptors. The importance of the NRG/ ErbB signalling pathway in regulating homeostasis at glutamatergic synapses, and its possible implications for schizophrenia, will be discussed.