eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications.

Brain cell biology Pub Date : 2008-08-01 Epub Date: 2008-08-02 DOI:10.1007/s11068-008-9027-6
Viviana Gradinaru, Kimberly R Thompson, Karl Deisseroth
{"title":"eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications.","authors":"Viviana Gradinaru,&nbsp;Kimberly R Thompson,&nbsp;Karl Deisseroth","doi":"10.1007/s11068-008-9027-6","DOIUrl":null,"url":null,"abstract":"<p><p>Temporally precise inhibition of distinct cell types in the intact nervous system has been enabled by the microbial halorhodopsin NpHR, a fast light-activated electrogenic Cl(-) pump. While neurons can be optically hyperpolarized and inhibited from firing action potentials at moderate NpHR expression levels, we have encountered challenges with pushing expression to extremely high levels, including apparent intracellular accumulations. We therefore sought to molecularly engineer NpHR to achieve strong expression without these cellular side effects. We found that high expression correlated with endoplasmic reticulum (ER) accumulation, and that under these conditions NpHR colocalized with ER proteins containing the KDEL ER retention sequence. We screened a number of different putative modulators of membrane trafficking and identified a combination of two motifs, an N-terminal signal peptide and a C-terminal ER export sequence, that markedly promoted membrane localization and ER export defined by confocal microscopy and whole-cell patch clamp. The modified NpHR displayed increased peak photocurrent in the absence of aggregations or toxicity, and potent optical inhibition was observed not only in vitro but also in vivo with thalamic single-unit recording. The new enhanced NpHR (eNpHR) allows safe, high-level expression in mammalian neurons, without toxicity and with augmented inhibitory function, in vitro and in vivo.</p>","PeriodicalId":72445,"journal":{"name":"Brain cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-008-9027-6","citationCount":"476","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-008-9027-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/8/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 476

Abstract

Temporally precise inhibition of distinct cell types in the intact nervous system has been enabled by the microbial halorhodopsin NpHR, a fast light-activated electrogenic Cl(-) pump. While neurons can be optically hyperpolarized and inhibited from firing action potentials at moderate NpHR expression levels, we have encountered challenges with pushing expression to extremely high levels, including apparent intracellular accumulations. We therefore sought to molecularly engineer NpHR to achieve strong expression without these cellular side effects. We found that high expression correlated with endoplasmic reticulum (ER) accumulation, and that under these conditions NpHR colocalized with ER proteins containing the KDEL ER retention sequence. We screened a number of different putative modulators of membrane trafficking and identified a combination of two motifs, an N-terminal signal peptide and a C-terminal ER export sequence, that markedly promoted membrane localization and ER export defined by confocal microscopy and whole-cell patch clamp. The modified NpHR displayed increased peak photocurrent in the absence of aggregations or toxicity, and potent optical inhibition was observed not only in vitro but also in vivo with thalamic single-unit recording. The new enhanced NpHR (eNpHR) allows safe, high-level expression in mammalian neurons, without toxicity and with augmented inhibitory function, in vitro and in vivo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
eNpHR:一种用于光遗传学应用的碱单胞菌紫红质。
微生物盐紫红质NpHR是一种快速光激活的电致氯(-)泵,它可以暂时精确抑制完整神经系统中不同类型的细胞。虽然在适度的NpHR表达水平下,神经元可以光超极化并抑制动作电位的激发,但我们遇到了将表达推至极高水平的挑战,包括明显的细胞内积聚。因此,我们试图对NpHR进行分子工程,以实现强表达而不产生这些细胞副作用。我们发现高表达与内质网(ER)积累相关,并且在这些条件下,NpHR与含有KDEL ER保留序列的ER蛋白共定位。我们筛选了许多不同的假定的膜运输调节剂,并鉴定了两个基序的组合,一个n端信号肽和一个c端内质网输出序列,它们显著促进了共聚焦显微镜和全细胞膜片钳定义的膜定位和内质网输出。修饰后的NpHR在没有聚集或毒性的情况下显示出峰值光电流的增加,并且通过丘脑单单元记录在体外和体内观察到强大的光抑制作用。新的增强型NpHR (eNpHR)在体外和体内均可在哺乳动物神经元中安全、高水平表达,无毒且具有增强的抑制功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Hello, goodbye. Imaging activity of neuronal populations with new long-wavelength voltage-sensitive dyes. Differences in c-jun and nNOS expression levels in motoneurons following different kinds of axonal injury in adult rats. Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1 O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1