Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance.

Carmen Vargas, Montserrat Argandoña, Mercedes Reina-Bueno, Javier Rodríguez-Moya, Cristina Fernández-Aunión, Joaquín J Nieto
{"title":"Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance.","authors":"Carmen Vargas,&nbsp;Montserrat Argandoña,&nbsp;Mercedes Reina-Bueno,&nbsp;Javier Rodríguez-Moya,&nbsp;Cristina Fernández-Aunión,&nbsp;Joaquín J Nieto","doi":"10.1186/1746-1448-4-14","DOIUrl":null,"url":null,"abstract":"<p><p>Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. Osmoprotection is achieved by the accumulation of compatible solutes either by transport (betaine, choline) or synthesis (mainly ectoine and hydroxyectoine). Ectoines can play additional roles as nutrients and, in the case of hydroxyectoine, in thermotolerance. A supplementary solute, trehalose, not present in cells grown at 37 degrees C, is accumulated at higher temperatures, suggesting its involvement in the response to heat stress. Trehalose is also accumulated at 37 degrees C in ectoine-deficient mutants, indicating that ectoines suppress trehalose synthesis in the wild-type strain. The genes for ectoine (ectABC) and hydroxyectoine (ectD, ectE) production are arranged in three different clusters within the C. salexigens chromosome. In order to cope with changing environment, C. salexigens regulates its cytoplasmic pool of ectoines by a number of mechanisms that we have started to elucidate. This is a highly complex process because (i) hydroxyectoine can be synthesized by other enzymes different to EctD (ii) ectoines can be catabolized to serve as nutrients, (iii) the involvement of several transcriptional regulators (sigmaS, sigma32, Fur, EctR) and hence different signal transduction pathways, and (iv) the existence of post-trancriptional control mechanisms. In this review we summarize our present knowledge on the physiology and genetics of the processes allowing C. salexigens to cope with osmotic stress and high temperature, with emphasis on the transcriptional regulation.</p>","PeriodicalId":87359,"journal":{"name":"Saline systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1746-1448-4-14","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saline systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1746-1448-4-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. Osmoprotection is achieved by the accumulation of compatible solutes either by transport (betaine, choline) or synthesis (mainly ectoine and hydroxyectoine). Ectoines can play additional roles as nutrients and, in the case of hydroxyectoine, in thermotolerance. A supplementary solute, trehalose, not present in cells grown at 37 degrees C, is accumulated at higher temperatures, suggesting its involvement in the response to heat stress. Trehalose is also accumulated at 37 degrees C in ectoine-deficient mutants, indicating that ectoines suppress trehalose synthesis in the wild-type strain. The genes for ectoine (ectABC) and hydroxyectoine (ectD, ectE) production are arranged in three different clusters within the C. salexigens chromosome. In order to cope with changing environment, C. salexigens regulates its cytoplasmic pool of ectoines by a number of mechanisms that we have started to elucidate. This is a highly complex process because (i) hydroxyectoine can be synthesized by other enzymes different to EctD (ii) ectoines can be catabolized to serve as nutrients, (iii) the involvement of several transcriptional regulators (sigmaS, sigma32, Fur, EctR) and hence different signal transduction pathways, and (iv) the existence of post-trancriptional control mechanisms. In this review we summarize our present knowledge on the physiology and genetics of the processes allowing C. salexigens to cope with osmotic stress and high temperature, with emphasis on the transcriptional regulation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有广泛耐盐性的salexigens嗜盐杆菌对渗透和温度胁迫的适应反应。
salexigens嗜盐杆菌是嗜盐单胞菌科的一种γ变形菌,具有较宽的生长盐度范围。渗透保护是通过运输(甜菜碱,胆碱)或合成(主要是外托碱和羟基外托碱)的相容溶质积累来实现的。外托因可以作为营养物质发挥额外的作用,在羟基外托因的情况下,在耐热性。一种补充溶质海藻糖,在37摄氏度生长的细胞中不存在,在更高的温度下积累,表明它参与了对热应激的反应。在37℃时,海藻糖也在异托因缺陷突变体中积累,这表明异托因抑制了野生型菌株的海藻糖合成。产外托因(ectABC)和羟外托因(ectD, ectE)的基因分布在三组不同的染色体中。为了应对不断变化的环境,C. salexigens通过多种机制调节其细胞质外托素池,我们已经开始阐明这些机制。这是一个高度复杂的过程,因为(i)羟外托因可以由不同于EctD的其他酶合成;(ii)外托因可以被分解代谢作为营养物质;(iii)几个转录调节因子(sigmaS, sigma32, Fur, EctR)的参与,因此不同的信号转导途径;(iv)存在转录后控制机制。本文综述了目前在水杨花应对渗透胁迫和高温的生理和遗传学方面的研究进展,重点介绍了水杨花应对渗透胁迫和高温的转录调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artisanal salt production in Aveiro/Portugal - an ecofriendly process. The fate of minor alkali elements in the chemical evolution of salt lakes. Protein attributes contribute to halo-stability, bioinformatics approach. HaloWeb: the haloarchaeal genomes database. Fairy, tadpole, and clam shrimps (Branchiopoda) in seasonally inundated clay pans in the western Mojave Desert and effect on primary producers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1