The role of discrete sample injection in trace mercury analysis by atomic fluorescence spectrometry.

P B Stockwell, W T Corns, N Brahma
{"title":"The role of discrete sample injection in trace mercury analysis by atomic fluorescence spectrometry.","authors":"P B Stockwell, W T Corns, N Brahma","doi":"10.1155/S1463924696000168","DOIUrl":null,"url":null,"abstract":"Coupling specific atomic fluorescence spectrometers to vapour generation techniques is a highly sensitive approach to the determination of trace levels of mercury. In many sample types the levels of the mercury content are extremely high and the matrix may have a deleterious e2ffect on the measurement. This paper discusses the application of discrete sample injection techniques to broaden the range of analytes tested and the levels analysed. The limitation of linear dynamic range for fluorescence is the self-absorption e/ffect. Reducing the eective sample size to below 100 # litres allows a linear calibration up to 10 parts per million (ppm). This sample limitation, coupled to the software’s ability to reset the sampling valve should the signal level exceed the maximum setting, ensures that levels of up to lOOppm can be presented to the analyser. An additional advantage of the discrete sample injection applies to complex analytical samples, for example concentrated sulphuric acid. The eective dilution provided by this means overcomes any matrix interferences and quickly provides correct data. With proper care, the analytical range of the system described can extend over seven orders of magnitudefrom less than 1 part per trillion (ppt) through to 10ppm.","PeriodicalId":22600,"journal":{"name":"The Journal of Automatic Chemistry","volume":"18 4","pages":"153-62"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S1463924696000168","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Automatic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S1463924696000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Coupling specific atomic fluorescence spectrometers to vapour generation techniques is a highly sensitive approach to the determination of trace levels of mercury. In many sample types the levels of the mercury content are extremely high and the matrix may have a deleterious e2ffect on the measurement. This paper discusses the application of discrete sample injection techniques to broaden the range of analytes tested and the levels analysed. The limitation of linear dynamic range for fluorescence is the self-absorption e/ffect. Reducing the eective sample size to below 100 # litres allows a linear calibration up to 10 parts per million (ppm). This sample limitation, coupled to the software’s ability to reset the sampling valve should the signal level exceed the maximum setting, ensures that levels of up to lOOppm can be presented to the analyser. An additional advantage of the discrete sample injection applies to complex analytical samples, for example concentrated sulphuric acid. The eective dilution provided by this means overcomes any matrix interferences and quickly provides correct data. With proper care, the analytical range of the system described can extend over seven orders of magnitudefrom less than 1 part per trillion (ppt) through to 10ppm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散进样在原子荧光光谱法分析痕量汞中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
product news From the editor's desk Product news Product News Meeting Reports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1