German G Gomez, Michelle J Hickey, Richard Tritz, Carol A Kruse
{"title":"Immunoresistant human glioma cell clones selected with alloreactive cytotoxic T lymphocytes: downregulation of multiple proapoptotic factors.","authors":"German G Gomez, Michelle J Hickey, Richard Tritz, Carol A Kruse","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We previously reported the cellular, functional and cytogenetic characterization of immunoresistant (IR) 13-06-IR29 and 13-06-IR30 human glioma cell clones isolated after immunoselection with alloreactive cytotoxic T lymphocytes (aCTL). Relative to the 13-06-MG parental cells, both clones resisted aCTL lysis at multiple effector to target ratios; the resistant phenotype was maintained for 13-41 cell doublings after cloning and when selective pressure was removed; cross-resistance to other inducers of apoptosis/cell death was also observed (Gomez et al, 2006; Gomez and Kruse, 2007). In this study we further characterize the IR clones for factors that may contribute to the resistance. Data obtained by in-vitro quantitative morphologic and 7-amino actinomycin D flow cytometric assays revealed reduced apoptotic cell death when IR clones were coincubated with aCTL, relative to the parental cells. Since changes in apoptosis were observed, we examined the expression patterns of apoptosis-related genes in several extracts of parental cells and IR clones using pathway-specific cDNA microarray analysis. In general, the apoptotic factors were downregulated in the IR clones. From three separate extracts analyzed separately on microarrays, three factors, ATM, caspases 3 and 8, were statistically downregulated in both IR clones. Immunoblotting of the proteins confirmed the findings. Therefore, a possible mechanism for immunoresistance in gliomas may be achieved by the downregulation of one or more genes in the apoptotic pathway.</p>","PeriodicalId":12503,"journal":{"name":"Gene Therapy and Molecular Biology","volume":"12 1","pages":"101-110"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597650/pdf/nihms-66860.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We previously reported the cellular, functional and cytogenetic characterization of immunoresistant (IR) 13-06-IR29 and 13-06-IR30 human glioma cell clones isolated after immunoselection with alloreactive cytotoxic T lymphocytes (aCTL). Relative to the 13-06-MG parental cells, both clones resisted aCTL lysis at multiple effector to target ratios; the resistant phenotype was maintained for 13-41 cell doublings after cloning and when selective pressure was removed; cross-resistance to other inducers of apoptosis/cell death was also observed (Gomez et al, 2006; Gomez and Kruse, 2007). In this study we further characterize the IR clones for factors that may contribute to the resistance. Data obtained by in-vitro quantitative morphologic and 7-amino actinomycin D flow cytometric assays revealed reduced apoptotic cell death when IR clones were coincubated with aCTL, relative to the parental cells. Since changes in apoptosis were observed, we examined the expression patterns of apoptosis-related genes in several extracts of parental cells and IR clones using pathway-specific cDNA microarray analysis. In general, the apoptotic factors were downregulated in the IR clones. From three separate extracts analyzed separately on microarrays, three factors, ATM, caspases 3 and 8, were statistically downregulated in both IR clones. Immunoblotting of the proteins confirmed the findings. Therefore, a possible mechanism for immunoresistance in gliomas may be achieved by the downregulation of one or more genes in the apoptotic pathway.