Process Validation and Screen Reproducibility in High-Throughput Screening

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS SLAS Discovery Pub Date : 2009-01-01 DOI:10.1177/1087057108326664
Isabel Coma , Liz Clark , Emilio Diez , Gavin Harper , Jesus Herranz , Glenn Hofmann , Mark Lennon , Nicola Richmond , Manuel Valmaseda , Ricardo Macarron
{"title":"Process Validation and Screen Reproducibility in High-Throughput Screening","authors":"Isabel Coma ,&nbsp;Liz Clark ,&nbsp;Emilio Diez ,&nbsp;Gavin Harper ,&nbsp;Jesus Herranz ,&nbsp;Glenn Hofmann ,&nbsp;Mark Lennon ,&nbsp;Nicola Richmond ,&nbsp;Manuel Valmaseda ,&nbsp;Ricardo Macarron","doi":"10.1177/1087057108326664","DOIUrl":null,"url":null,"abstract":"<div><div>The use of large-scale compound screening has become a key component of drug discovery projects in both the pharmaceutical and the biotechnological industries. More recently, these activities have also been embraced by the academic community as a major tool for chemical genomic activities. High-throughput screening (HTS) activities constitute a major step in the initial drug discovery efforts and involve the use of large quantities of biological reagents, hundreds of thousands to millions of compounds, and the utilization of expensive equipment. All these factors make it very important to evaluate in advance of the HTS campaign any potential issues related to reproducibility of the experimentation and the quality of the results obtained at the end of these very costly activities. In this article, the authors describe how GlaxoSmithKline (GSK) has addressed the need of a true validation of the HTS process before embarking in full HTS campaigns. They present 2 different aspects of the so-called validation process: (1) optimization of the HTS workflow and its validation as a quality process and (2) the statistical evaluation of the HTS, focusing on the reproducibility of results and the ability to distinguish active from nonactive compounds in a vast collection of samples. The authors describe a variety of reproducibility indexes that are either innovative or have been adapted from generic medical diagnostic screening strategies. In addition, they exemplify how these validation tools have been implemented in a number of case studies at GSK.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"14 1","pages":"Pages 66-76"},"PeriodicalIF":2.7000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555222080182","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of large-scale compound screening has become a key component of drug discovery projects in both the pharmaceutical and the biotechnological industries. More recently, these activities have also been embraced by the academic community as a major tool for chemical genomic activities. High-throughput screening (HTS) activities constitute a major step in the initial drug discovery efforts and involve the use of large quantities of biological reagents, hundreds of thousands to millions of compounds, and the utilization of expensive equipment. All these factors make it very important to evaluate in advance of the HTS campaign any potential issues related to reproducibility of the experimentation and the quality of the results obtained at the end of these very costly activities. In this article, the authors describe how GlaxoSmithKline (GSK) has addressed the need of a true validation of the HTS process before embarking in full HTS campaigns. They present 2 different aspects of the so-called validation process: (1) optimization of the HTS workflow and its validation as a quality process and (2) the statistical evaluation of the HTS, focusing on the reproducibility of results and the ability to distinguish active from nonactive compounds in a vast collection of samples. The authors describe a variety of reproducibility indexes that are either innovative or have been adapted from generic medical diagnostic screening strategies. In addition, they exemplify how these validation tools have been implemented in a number of case studies at GSK.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高通量筛选中的工艺验证和筛选再现性
大规模化合物筛选的使用已成为制药和生物技术行业药物发现项目的关键组成部分。最近,这些活动也被学术界作为化学基因组活动的主要工具所接受。高通量筛选(HTS)活动是最初药物发现工作的一个重要步骤,涉及使用大量生物试剂、数十万到数百万种化合物以及使用昂贵的设备。所有这些因素使得在HTS活动之前评估与实验的可重复性和在这些非常昂贵的活动结束时获得的结果质量有关的任何潜在问题非常重要。在这篇文章中,作者描述了葛兰素史克(GSK)如何在开展全面的HTS活动之前解决了对HTS过程进行真正验证的需要。他们提出了所谓的验证过程的两个不同方面:(1)HTS工作流程的优化及其作为质量过程的验证;(2)HTS的统计评估,重点是结果的可重复性和在大量样品中区分活性和非活性化合物的能力。作者描述了各种再现性指标,要么是创新的,要么是从通用医学诊断筛选策略中改编的。此外,他们举例说明了这些验证工具是如何在葛兰素史克的一些案例研究中实施的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SLAS Discovery
SLAS Discovery Chemistry-Analytical Chemistry
CiteScore
7.00
自引率
3.20%
发文量
58
审稿时长
39 days
期刊介绍: Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease. SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success. SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies. SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology. SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).
期刊最新文献
High-throughput screening identifies non-nucleoside inhibitors of the SARS-CoV-2 polymerase with novel mechanisms PCIM: Learning pixel attributions via pixel-wise channel isolation mixing in high content imaging Fluorescent probe-based detection of outer membrane damage of Gram-negative bacteria Streamlining cellular thermal shift assay for ultra-high throughput screening An ELISA for discovering protein-protein interaction inhibitors: Blocking lysinoalanine crosslinking between subunits of the spirochete flagellar hook as a test case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1