Location-known-exactly human-observer ROC studies of attenuation and other corrections for SPECT lung imaging.

Andre Lehovich, Howard C Gifford, Michael A King
{"title":"Location-known-exactly human-observer ROC studies of attenuation and other corrections for SPECT lung imaging.","authors":"Andre Lehovich,&nbsp;Howard C Gifford,&nbsp;Michael A King","doi":"10.1109/NSSMIC.2006.353696","DOIUrl":null,"url":null,"abstract":"<p><p>We use receiver operating characteristic (ROC) analysis of a location-known-exactly (LKE) lesion detection task to compare the image quality of SPECT reconstruction with and without various combinations of attenuation correction (AC), scatter correction (SC) and resolution compensation (RC). Hybrid images were generated from Tc-99m labelled NeoTect clinical backgrounds into which Monte Carlo simulated solitary pulmonary nodule (SPN) lung lesions were added, then reconstructed using several strategies. Results from a human-observer study show that attenuation correction degrades SPN detection, while resolution correction improves SPN detection, even when the lesion location is known. This agrees with the results of a previous localization-response operating characteristic (LROC) study using the same images, indicating that location uncertainty is not the sole source of the changes in detection accuracy.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"6 ","pages":"3229-3232"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2006.353696","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2006.353696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We use receiver operating characteristic (ROC) analysis of a location-known-exactly (LKE) lesion detection task to compare the image quality of SPECT reconstruction with and without various combinations of attenuation correction (AC), scatter correction (SC) and resolution compensation (RC). Hybrid images were generated from Tc-99m labelled NeoTect clinical backgrounds into which Monte Carlo simulated solitary pulmonary nodule (SPN) lung lesions were added, then reconstructed using several strategies. Results from a human-observer study show that attenuation correction degrades SPN detection, while resolution correction improves SPN detection, even when the lesion location is known. This agrees with the results of a previous localization-response operating characteristic (LROC) study using the same images, indicating that location uncertainty is not the sole source of the changes in detection accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
位置已知的人类观察者的衰减和其他校正SPECT肺成像的ROC研究。
我们使用精确位置已知(LKE)病变检测任务的接收者工作特征(ROC)分析来比较不同衰减校正(AC)、散射校正(SC)和分辨率补偿(RC)组合的SPECT重建图像质量。在Tc-99m标记的neoect临床背景中生成混合图像,其中加入蒙特卡罗模拟孤立性肺结节(SPN)肺病变,然后采用几种策略重建。人类观察者的研究结果表明,衰减校正降低了SPN检测,而分辨率校正提高了SPN检测,即使病变位置已知。这与先前使用相同图像的定位响应操作特性(LROC)研究的结果一致,表明位置不确定性不是检测精度变化的唯一来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1