{"title":"Less is more: how protein degradation regulates muscle development.","authors":"T Hoppe","doi":"10.1007/2789_2008_101","DOIUrl":null,"url":null,"abstract":"<p><p>The organization of sarcomeric structures during muscle development involves regulated multistep assembly pathways. The myosin assembly factor UNC-45 functions both as a molecular chaperone and as an Hsp90 co-chaperone for myosin throughout muscle thick-filament formation. Consequently, mutations in unc-45 result in paralyzed worms with severe myofibril disorganization in striated body wall muscles. Our data suggest that functional muscle formation in Caenorhabditis elegans is linked to ubiquitin-dependent UNC-45 turnover, regulated by the E3 enzymes UFD-2 and CHN-1 in cooperation with the ubiquitin-selective chaperone CDC-48 (also known as p97 in human). Missense mutations in the gene encoding p97 are known to cause a dominant, late-onset hereditary inclusion body myopathy. Remarkably, we identified a conserved role of CDC-48/p97 in the process of myofiber differentiation and maintenance, which appears to have important implications for understanding defects in muscle formation and maintenance during pathological conditions.</p>","PeriodicalId":87471,"journal":{"name":"Ernst Schering Foundation symposium proceedings","volume":" 1","pages":"67-73"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/2789_2008_101","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Foundation symposium proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/2789_2008_101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The organization of sarcomeric structures during muscle development involves regulated multistep assembly pathways. The myosin assembly factor UNC-45 functions both as a molecular chaperone and as an Hsp90 co-chaperone for myosin throughout muscle thick-filament formation. Consequently, mutations in unc-45 result in paralyzed worms with severe myofibril disorganization in striated body wall muscles. Our data suggest that functional muscle formation in Caenorhabditis elegans is linked to ubiquitin-dependent UNC-45 turnover, regulated by the E3 enzymes UFD-2 and CHN-1 in cooperation with the ubiquitin-selective chaperone CDC-48 (also known as p97 in human). Missense mutations in the gene encoding p97 are known to cause a dominant, late-onset hereditary inclusion body myopathy. Remarkably, we identified a conserved role of CDC-48/p97 in the process of myofiber differentiation and maintenance, which appears to have important implications for understanding defects in muscle formation and maintenance during pathological conditions.