Intervention in context-sensitive probabilistic Boolean networks revisited.

Babak Faryabi, Golnaz Vahedi, Jean-Francois Chamberland, Aniruddha Datta, Edward R Dougherty
{"title":"Intervention in context-sensitive probabilistic Boolean networks revisited.","authors":"Babak Faryabi,&nbsp;Golnaz Vahedi,&nbsp;Jean-Francois Chamberland,&nbsp;Aniruddha Datta,&nbsp;Edward R Dougherty","doi":"10.1155/2009/360864","DOIUrl":null,"url":null,"abstract":"<p><p>An approximate representation for the state space of a context-sensitive probabilistic Boolean network has previously been proposed and utilized to devise therapeutic intervention strategies. Whereas the full state of a context-sensitive probabilistic Boolean network is specified by an ordered pair composed of a network context and a gene-activity profile, this approximate representation collapses the state space onto the gene-activity profiles alone. This reduction yields an approximate transition probability matrix, absent of context, for the Markov chain associated with the context-sensitive probabilistic Boolean network. As with many approximation methods, a price must be paid for using a reduced model representation, namely, some loss of optimality relative to using the full state space. This paper examines the effects on intervention performance caused by the reduction with respect to various values of the model parameters. This task is performed using a new derivation for the transition probability matrix of the context-sensitive probabilistic Boolean network. This expression of transition probability distributions is in concert with the original definition of context-sensitive probabilistic Boolean network. The performance of optimal and approximate therapeutic strategies is compared for both synthetic networks and a real case study. It is observed that the approximate representation describes the dynamics of the context-sensitive probabilistic Boolean network through the instantaneously random probabilistic Boolean network with similar parameters.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":"360864"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/360864","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/360864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/4/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

An approximate representation for the state space of a context-sensitive probabilistic Boolean network has previously been proposed and utilized to devise therapeutic intervention strategies. Whereas the full state of a context-sensitive probabilistic Boolean network is specified by an ordered pair composed of a network context and a gene-activity profile, this approximate representation collapses the state space onto the gene-activity profiles alone. This reduction yields an approximate transition probability matrix, absent of context, for the Markov chain associated with the context-sensitive probabilistic Boolean network. As with many approximation methods, a price must be paid for using a reduced model representation, namely, some loss of optimality relative to using the full state space. This paper examines the effects on intervention performance caused by the reduction with respect to various values of the model parameters. This task is performed using a new derivation for the transition probability matrix of the context-sensitive probabilistic Boolean network. This expression of transition probability distributions is in concert with the original definition of context-sensitive probabilistic Boolean network. The performance of optimal and approximate therapeutic strategies is compared for both synthetic networks and a real case study. It is observed that the approximate representation describes the dynamics of the context-sensitive probabilistic Boolean network through the instantaneously random probabilistic Boolean network with similar parameters.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视上下文敏感概率布尔网络中的干预。
上下文敏感的概率布尔网络的状态空间的近似表示已经被提出并用于设计治疗干预策略。而上下文敏感的概率布尔网络的完整状态是由网络上下文和基因活动概况组成的有序对指定的,这种近似表示将状态空间单独折叠到基因活动概况上。这种约简产生了与上下文敏感的概率布尔网络相关的马尔可夫链的近似转移概率矩阵,没有上下文。与许多近似方法一样,使用简化的模型表示必须付出代价,即,相对于使用完整状态空间,会损失一些最优性。本文考察了相对于模型参数的不同值的减少对干预效果的影响。该任务是使用上下文敏感概率布尔网络的转移概率矩阵的新推导来执行的。这种转移概率分布的表达式与上下文敏感概率布尔网络的原始定义是一致的。在合成网络和实际案例研究中比较了最优治疗策略和近似治疗策略的性能。观察到,近似表示通过具有相似参数的瞬时随机概率布尔网络来描述上下文敏感概率布尔网络的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. On biometric systems: electrocardiogram Gaussianity and data synthesis. BCC-NER: bidirectional, contextual clues named entity tagger for gene/protein mention recognition. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. Bayesian inference for biomarker discovery in proteomics: an analytic solution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1