Maternal and neonatal outcomes of elective induction of labor.

Aaron B Caughey, Vandana Sundaram, Anjali J Kaimal, Yvonne W Cheng, Allison Gienger, Sarah E Little, Jason F Lee, Luchin Wong, Brian L Shaffer, Susan H Tran, Amy Padula, Kathryn M McDonald, Elisa F Long, Douglas K Owens, Dena M Bravata
{"title":"Maternal and neonatal outcomes of elective induction of labor.","authors":"Aaron B Caughey, Vandana Sundaram, Anjali J Kaimal, Yvonne W Cheng, Allison Gienger, Sarah E Little, Jason F Lee, Luchin Wong, Brian L Shaffer, Susan H Tran, Amy Padula, Kathryn M McDonald, Elisa F Long, Douglas K Owens, Dena M Bravata","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Induction of labor is on the rise in the U.S., increasing from 9.5 percent in 1990 to 22.1 percent in 2004. Although, it is not entirely clear what proportion of these inductions are elective (i.e. without a medical indication), the overall rate of induction of labor is rising faster than the rate of pregnancy complications that would lead to a medically indicated induction. However, the maternal and neonatal effects of induction of labor are unclear. Many studies compare women with induction of labor to those in spontaneous labor. This is problematic, because at any point in the management of the woman with a term gestation, the clinician has the choice between induction of labor and expectant management, not spontaneous labor. Expectant management of the pregnancy involves nonintervention at any particular point in time and allowing the pregnancy to progress to a future gestational age. Thus, women undergoing expectant management may go into spontaneous labor or may require indicated induction of labor at a future gestational age.</p><p><strong>Objectives: </strong>The Stanford-UCSF Evidence-Based Practice Center examined the evidence regarding four Key Questions: What evidence describes the maternal risks of elective induction versus expectant management? What evidence describes the fetal/neonatal risks of elective induction versus expectant management? What is the evidence that certain physical conditions/patient characteristics are predictive of a successful induction of labor? How is a failed induction defined?</p><p><strong>Methods: </strong>We performed a systematic review to answer the Key Questions. We searched MEDLINE(1966-2007) and bibliographies of prior systematic reviews and the included studies for English language studies of maternal and fetal outcomes after elective induction of labor. We evaluated the quality of included studies. When possible, we synthesized study data using random effects models. We also evaluated the potential clinical outcomes and cost-effectiveness of elective induction of labor versus expectant management of pregnancy labor at 41, 40, and 39 weeks' gestation using decision-analytic models.</p><p><strong>Results: </strong>Our searches identified 3,722 potentially relevant articles, of which 76 articles met inclusion criteria. Nine RCTs compared expectant management with elective induction of labor. We found that overall, expectant management of pregnancy was associated with an approximately 22 percent higher odds of cesarean delivery than elective induction of labor (OR 1.22, 95 percent CI 1.07-1.39; absolute risk difference 1.9, 95 percent CI: 0.2-3.7 percent). The majority of these studies were in women at or beyond 41 weeks of gestation (OR 1.21, 95 percent CI 1.01-1.46). In studies of women at or beyond 41 weeks of gestation, the evidence was rated as moderate because of the size and number of studies and consistency of the findings. Among women less than 41 weeks of gestation, there were three trials which reported no difference in risk of cesarean delivery among women who were induced as compared to expectant management (OR 1.73; 95 percent CI: 0.67-4.5, P=0.26), but all of these trials were small, non-U.S., older, and of poor quality. When we stratified the analysis by country, we found that the odds of cesarean delivery were higher in women who were expectantly managed compared to elective induction of labor in studies conducted outside the U.S. (OR 1.22; 95 percent CI 1.05-1.40) but were not statistically different in studies conducted in the U.S. (OR 1.28; 95 percent CI 0.65-2.49). Women who were expectantly managed were also more likely to have meconium-stained amniotic fluid than those who were electively induced (OR 2.04; 95 percent CI: 1.34-3.09). Observational studies reported a consistently lower risk of cesarean delivery among women who underwent spontaneous labor (6 percent) compared with women who had an elective induction of labor (8 percent) with a statistically significant decrease when combined (OR 0.63; 95 percent CI: 0.49-0.79), but again utilized the wrong control group and did not appropriately adjust for gestational age. We found moderate to high quality evidence that increased parity, a more favorable cervical status as assessed by a higher Bishop score, and decreased gestational age were associated with successful labor induction (58 percent of the included studies defined success as achieving a vaginal delivery anytime after the onset of the induction of labor; in these instances, induction was considered a failure when it led to a cesarean delivery). In the decision analytic model, we utilized a baseline assumption of no difference in cesarean delivery between the two arms as there was no statistically significant difference in the U.S. studies or in women prior to 41 0/7 weeks of gestation. In each of the models, women who were electively induced had better overall outcomes among both mothers and neonates as estimated by total quality-adjusted life years (QALYs) as well as by reduction in specific perinatal outcomes such as shoulder dystocia, meconium aspiration syndrome, and preeclampsia. Additionally, induction of labor was cost-effective at $10,789 per QALY with elective induction of labor at 41 weeks of gestation, $9,932 per QALY at 40 weeks of gestation, and $20,222 per QALY at 39 weeks of gestation utilizing a cost-effectiveness threshold of $50,000 per QALY. At 41 weeks of gestation, these results were generally robust to variations in the assumed ranges in univariate and multi-way sensitivity analyses. However, the findings of cost-effectiveness at 40 and 39 weeks of gestation were not robust to the ranges of the assumptions. In addition, the strength of evidence for some model inputs was low, therefore our analyses are exploratory rather than definitive.</p><p><strong>Conclusions: </strong>Randomized controlled trials suggest that elective induction of labor at 41 weeks of gestation and beyond may be associated with a decrease in both the risk of cesarean delivery and of meconium-stained amniotic fluid. The evidence regarding elective induction of labor prior to 41 weeks of gestation is insufficient to draw any conclusion. There is a paucity of information from prospective RCTs examining other maternal or neonatal outcomes in the setting of elective induction of labor. Observational studies found higher rates of cesarean delivery with elective induction of labor, but compared women undergoing induction of labor to women in spontaneous labor and were subject to potential confounding bias, particularly from gestational age. Such studies do not inform the question of how elective induction of labor affects maternal or neonatal outcomes. Elective induction of labor at 41 weeks of gestation and potentially earlier also appears to be a cost-effective intervention, but because of the need for further data to populate these models our analyses are not definitive. Despite the evidence from the prospective, RCTs reported above, there are concerns about the translation of such findings into actual practice, thus, there is a great need for studying the translation of such research into settings where the majority of obstetric care is provided.</p>","PeriodicalId":72991,"journal":{"name":"Evidence report/technology assessment","volume":" 176","pages":"1-257"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evidence report/technology assessment","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Induction of labor is on the rise in the U.S., increasing from 9.5 percent in 1990 to 22.1 percent in 2004. Although, it is not entirely clear what proportion of these inductions are elective (i.e. without a medical indication), the overall rate of induction of labor is rising faster than the rate of pregnancy complications that would lead to a medically indicated induction. However, the maternal and neonatal effects of induction of labor are unclear. Many studies compare women with induction of labor to those in spontaneous labor. This is problematic, because at any point in the management of the woman with a term gestation, the clinician has the choice between induction of labor and expectant management, not spontaneous labor. Expectant management of the pregnancy involves nonintervention at any particular point in time and allowing the pregnancy to progress to a future gestational age. Thus, women undergoing expectant management may go into spontaneous labor or may require indicated induction of labor at a future gestational age.

Objectives: The Stanford-UCSF Evidence-Based Practice Center examined the evidence regarding four Key Questions: What evidence describes the maternal risks of elective induction versus expectant management? What evidence describes the fetal/neonatal risks of elective induction versus expectant management? What is the evidence that certain physical conditions/patient characteristics are predictive of a successful induction of labor? How is a failed induction defined?

Methods: We performed a systematic review to answer the Key Questions. We searched MEDLINE(1966-2007) and bibliographies of prior systematic reviews and the included studies for English language studies of maternal and fetal outcomes after elective induction of labor. We evaluated the quality of included studies. When possible, we synthesized study data using random effects models. We also evaluated the potential clinical outcomes and cost-effectiveness of elective induction of labor versus expectant management of pregnancy labor at 41, 40, and 39 weeks' gestation using decision-analytic models.

Results: Our searches identified 3,722 potentially relevant articles, of which 76 articles met inclusion criteria. Nine RCTs compared expectant management with elective induction of labor. We found that overall, expectant management of pregnancy was associated with an approximately 22 percent higher odds of cesarean delivery than elective induction of labor (OR 1.22, 95 percent CI 1.07-1.39; absolute risk difference 1.9, 95 percent CI: 0.2-3.7 percent). The majority of these studies were in women at or beyond 41 weeks of gestation (OR 1.21, 95 percent CI 1.01-1.46). In studies of women at or beyond 41 weeks of gestation, the evidence was rated as moderate because of the size and number of studies and consistency of the findings. Among women less than 41 weeks of gestation, there were three trials which reported no difference in risk of cesarean delivery among women who were induced as compared to expectant management (OR 1.73; 95 percent CI: 0.67-4.5, P=0.26), but all of these trials were small, non-U.S., older, and of poor quality. When we stratified the analysis by country, we found that the odds of cesarean delivery were higher in women who were expectantly managed compared to elective induction of labor in studies conducted outside the U.S. (OR 1.22; 95 percent CI 1.05-1.40) but were not statistically different in studies conducted in the U.S. (OR 1.28; 95 percent CI 0.65-2.49). Women who were expectantly managed were also more likely to have meconium-stained amniotic fluid than those who were electively induced (OR 2.04; 95 percent CI: 1.34-3.09). Observational studies reported a consistently lower risk of cesarean delivery among women who underwent spontaneous labor (6 percent) compared with women who had an elective induction of labor (8 percent) with a statistically significant decrease when combined (OR 0.63; 95 percent CI: 0.49-0.79), but again utilized the wrong control group and did not appropriately adjust for gestational age. We found moderate to high quality evidence that increased parity, a more favorable cervical status as assessed by a higher Bishop score, and decreased gestational age were associated with successful labor induction (58 percent of the included studies defined success as achieving a vaginal delivery anytime after the onset of the induction of labor; in these instances, induction was considered a failure when it led to a cesarean delivery). In the decision analytic model, we utilized a baseline assumption of no difference in cesarean delivery between the two arms as there was no statistically significant difference in the U.S. studies or in women prior to 41 0/7 weeks of gestation. In each of the models, women who were electively induced had better overall outcomes among both mothers and neonates as estimated by total quality-adjusted life years (QALYs) as well as by reduction in specific perinatal outcomes such as shoulder dystocia, meconium aspiration syndrome, and preeclampsia. Additionally, induction of labor was cost-effective at $10,789 per QALY with elective induction of labor at 41 weeks of gestation, $9,932 per QALY at 40 weeks of gestation, and $20,222 per QALY at 39 weeks of gestation utilizing a cost-effectiveness threshold of $50,000 per QALY. At 41 weeks of gestation, these results were generally robust to variations in the assumed ranges in univariate and multi-way sensitivity analyses. However, the findings of cost-effectiveness at 40 and 39 weeks of gestation were not robust to the ranges of the assumptions. In addition, the strength of evidence for some model inputs was low, therefore our analyses are exploratory rather than definitive.

Conclusions: Randomized controlled trials suggest that elective induction of labor at 41 weeks of gestation and beyond may be associated with a decrease in both the risk of cesarean delivery and of meconium-stained amniotic fluid. The evidence regarding elective induction of labor prior to 41 weeks of gestation is insufficient to draw any conclusion. There is a paucity of information from prospective RCTs examining other maternal or neonatal outcomes in the setting of elective induction of labor. Observational studies found higher rates of cesarean delivery with elective induction of labor, but compared women undergoing induction of labor to women in spontaneous labor and were subject to potential confounding bias, particularly from gestational age. Such studies do not inform the question of how elective induction of labor affects maternal or neonatal outcomes. Elective induction of labor at 41 weeks of gestation and potentially earlier also appears to be a cost-effective intervention, but because of the need for further data to populate these models our analyses are not definitive. Despite the evidence from the prospective, RCTs reported above, there are concerns about the translation of such findings into actual practice, thus, there is a great need for studying the translation of such research into settings where the majority of obstetric care is provided.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性引产的产妇和新生儿结局。
在每个模型中,选择性诱导的妇女在母亲和新生儿中都有更好的总体结果,通过总质量调整生命年(QALYs)以及特定围产期结局(如肩难产、胎便吸入综合征和先兆子痫)的减少来估计。此外,引产的成本效益为:41周择期引产每QALY 10,789美元,40周每QALY 9,932美元,39周每QALY 20,222美元,每QALY成本效益阈值为50,000美元。在妊娠41周时,这些结果在单变量和多方向敏感性分析的假设范围内的变化通常是稳健的。然而,在妊娠40周和39周的成本效益的研究结果并不符合假设的范围。此外,一些模型输入的证据强度较低,因此我们的分析是探索性的,而不是决定性的。结论:随机对照试验提示,妊娠41周及以后择期引产可能与剖宫产和羊水粪染风险的降低有关。关于妊娠41周前择期引产的证据不足以得出任何结论。在选择性引产的情况下,缺乏前瞻性随机对照试验检查其他产妇或新生儿结局的信息。观察性研究发现,择期引产的剖宫产率更高,但将引产妇女与自然分娩妇女进行比较,存在潜在的混杂偏倚,特别是从胎龄来看。这些研究并没有说明选择性引产是如何影响产妇或新生儿结局的。在妊娠41周或更早的时候择期引产似乎也是一种具有成本效益的干预措施,但由于需要进一步的数据来填充这些模型,我们的分析并不确定。尽管有上述前瞻性随机对照试验的证据,但人们对将这些发现转化为实际实践存在担忧,因此,非常需要研究将这些研究转化为提供大多数产科护理的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omega-3 Fatty Acids and Maternal and Child Health: An Updated Systematic Review. Data Linkage Strategies to Advance Youth Suicide Prevention. Omega-3 Fatty Acids and Cardiovascular Disease: An Updated Systematic Review. Health Information Exchange. Diagnosis and Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1