Optimizing Bayes error for protein structure model selection by stability mutagenesis.

Xiaoduan Ye, Alan M Friedman, Chris Bailey-Kellogg
{"title":"Optimizing Bayes error for protein structure model selection by stability mutagenesis.","authors":"Xiaoduan Ye,&nbsp;Alan M Friedman,&nbsp;Chris Bailey-Kellogg","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Site-directed mutagenesis affects protein stability in a manner dependent on the local structural environment of the mutated residue; e.g., a hydrophobic to polar substitution would behave differently in the core vs. on the surface of the protein. Thus site-directed mutagenesis followed by stability measurement enables evaluation of and selection among predicted structure models, based on consistency between predicted and experimental stability changes (DeltaDeltaGo values). This paper develops a method for planning a set of individual site-directed mutations for protein structure model selection, so as to minimize the Bayes error, i.e., the probability of choosing the wrong model. While in general it is hard to calculate exactly the multi-dimensional Bayes error defined by a set of mutations, we leverage the structure of \"DeltaDeltaGo space\" to develop tight upper and lower bounds. We further develop a lower bound on the Bayes error of any plan that uses a fixed number of mutations from a set of candidates. We use this bound in a branch-and-bound planning algorithm to find optimal and near-optimal plans. We demonstrate the significance and effectiveness of this approach in planning mutations for elucidating the structure of the pTfa chaperone protein from bacteriophage lambda.</p>","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"7 ","pages":"99-108"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Site-directed mutagenesis affects protein stability in a manner dependent on the local structural environment of the mutated residue; e.g., a hydrophobic to polar substitution would behave differently in the core vs. on the surface of the protein. Thus site-directed mutagenesis followed by stability measurement enables evaluation of and selection among predicted structure models, based on consistency between predicted and experimental stability changes (DeltaDeltaGo values). This paper develops a method for planning a set of individual site-directed mutations for protein structure model selection, so as to minimize the Bayes error, i.e., the probability of choosing the wrong model. While in general it is hard to calculate exactly the multi-dimensional Bayes error defined by a set of mutations, we leverage the structure of "DeltaDeltaGo space" to develop tight upper and lower bounds. We further develop a lower bound on the Bayes error of any plan that uses a fixed number of mutations from a set of candidates. We use this bound in a branch-and-bound planning algorithm to find optimal and near-optimal plans. We demonstrate the significance and effectiveness of this approach in planning mutations for elucidating the structure of the pTfa chaperone protein from bacteriophage lambda.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稳定性诱变的蛋白质结构模型选择贝叶斯误差优化。
定点诱变以依赖于突变残基的局部结构环境的方式影响蛋白质的稳定性;例如,疏水取代到极性取代在蛋白质的核心和表面表现不同。因此,基于预测和实验稳定性变化(DeltaDeltaGo值)之间的一致性,定点诱变和稳定性测量可以对预测的结构模型进行评估和选择。本文提出了一种规划一组单个位点定向突变用于蛋白质结构模型选择的方法,以最小化贝叶斯误差,即选择错误模型的概率。虽然通常很难精确计算由一组突变定义的多维贝叶斯误差,但我们利用“DeltaDeltaGo空间”的结构来开发严密的上界和下界。我们进一步开发了使用候选集合中固定数量的突变的任何计划的贝叶斯误差的下界。我们在分支定界规划算法中使用这个定界来寻找最优和近最优规划。我们证明了这种方法在计划突变以阐明来自噬菌体lambda的pTfa伴侣蛋白结构方面的重要性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Gene Discovery in the Human Malaria Parasite using Nucleosome Positioning Data. Estimating support for protein-protein interaction data with applications to function prediction. On the accurate construction of consensus genetic maps. Efficient haplotype inference from pedigrees with missing data using linear systems with disjoint-set data structures. Knowledge representation and data mining for biological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1