Martin Alain Mune Mune , Samuel René Minka , Thomas Henle
{"title":"Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates","authors":"Martin Alain Mune Mune , Samuel René Minka , Thomas Henle","doi":"10.1016/j.foodchem.2018.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Protein isolate was hydrolysed by Alcalase, thermolysin and trypsin. BBPH produced by Alcalase showed highest angiotensin-converting enzyme (ACE) inhibitory properties (IC<sub>50</sub>: 52 µg/mL). Hydrolysates produced by Alcalase and thermolysin exhibited similar dipeptidyl peptidase-IV (DPP-IV) inhibitory activity (IC<sub>50</sub>: 1.73 mg/mL), while low inhibitory activity was observed for hydrolysate produced by trypsin. BBPH also showed protective effect against oxidative stress with significant 2,2-diphenyl-1-picrylhydrazyl radical scavenging and ferrous chelating activity. Bioactive peptides of BBPH produced by thermolysin showed better resistance to simulated gastrointestinal digestion (SGID), while the DPP-IV and ACE inhibitory properties were significantly reduced. Molecular weight distribution showed significant reduction in peptides of the molecular weight range 200–400 Da in BBPH produced by Alcalase, after SGID. LC-ESI-TOF-MS and <em>in silico</em> analysis showed the presence of potential peptides with both ACE and DPP-IV inhibitory properties in BBPH produced by thermolysin.</p></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.foodchem.2018.01.001","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814618300013","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 58
Abstract
Protein isolate was hydrolysed by Alcalase, thermolysin and trypsin. BBPH produced by Alcalase showed highest angiotensin-converting enzyme (ACE) inhibitory properties (IC50: 52 µg/mL). Hydrolysates produced by Alcalase and thermolysin exhibited similar dipeptidyl peptidase-IV (DPP-IV) inhibitory activity (IC50: 1.73 mg/mL), while low inhibitory activity was observed for hydrolysate produced by trypsin. BBPH also showed protective effect against oxidative stress with significant 2,2-diphenyl-1-picrylhydrazyl radical scavenging and ferrous chelating activity. Bioactive peptides of BBPH produced by thermolysin showed better resistance to simulated gastrointestinal digestion (SGID), while the DPP-IV and ACE inhibitory properties were significantly reduced. Molecular weight distribution showed significant reduction in peptides of the molecular weight range 200–400 Da in BBPH produced by Alcalase, after SGID. LC-ESI-TOF-MS and in silico analysis showed the presence of potential peptides with both ACE and DPP-IV inhibitory properties in BBPH produced by thermolysin.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture