Future potential and status of selective sodium channel blockers for the treatment of pain.

Birgit T Priest
{"title":"Future potential and status of selective sodium channel blockers for the treatment of pain.","authors":"Birgit T Priest","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-gated sodium (NaV1) channels in the peripheral nervous system and CNS play a critical role in pain signaling. Nociceptive neurons express several NaV1 channel subtypes that may contribute to the hyperexcitability characteristic of chronic pain states. The non-subtype selective, state-dependent NaV1 channel blockers lidocaine and carbamazepine are efficacious in the treatment of neuropathic pain; however, the target-driven development of novel sodium channel blocking analgesics has been generally unsuccessful. Recent human genetic data indicate an important role for the NaV1.7 channel subtype in pain signaling, and significant preclinical data identifies the NaV1.8 channel as a promising analgesic target, suggesting that the selective blockade of these subtypes may improve on the therapeutic index of sodium channel modulators. However, few subtype-selective small-molecule sodium channel blockers have been described. This review provides an overview of the NaV1 channel subtypes that are preferentially expressed in nociceptive neurons, the assay technologies used to develop NaV1 channel blockers, and a summary of recent advances in the development of subtype-selective and novel state-dependent NaV1 channel blockers.</p>","PeriodicalId":10809,"journal":{"name":"Current opinion in drug discovery & development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in drug discovery & development","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage-gated sodium (NaV1) channels in the peripheral nervous system and CNS play a critical role in pain signaling. Nociceptive neurons express several NaV1 channel subtypes that may contribute to the hyperexcitability characteristic of chronic pain states. The non-subtype selective, state-dependent NaV1 channel blockers lidocaine and carbamazepine are efficacious in the treatment of neuropathic pain; however, the target-driven development of novel sodium channel blocking analgesics has been generally unsuccessful. Recent human genetic data indicate an important role for the NaV1.7 channel subtype in pain signaling, and significant preclinical data identifies the NaV1.8 channel as a promising analgesic target, suggesting that the selective blockade of these subtypes may improve on the therapeutic index of sodium channel modulators. However, few subtype-selective small-molecule sodium channel blockers have been described. This review provides an overview of the NaV1 channel subtypes that are preferentially expressed in nociceptive neurons, the assay technologies used to develop NaV1 channel blockers, and a summary of recent advances in the development of subtype-selective and novel state-dependent NaV1 channel blockers.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性钠通道阻滞剂治疗疼痛的未来潜力和现状。
外周神经系统和中枢神经系统中的电压门控钠(NaV1)通道在疼痛信号传导中起关键作用。痛觉神经元表达几种NaV1通道亚型,这些亚型可能有助于慢性疼痛状态的高兴奋性特征。非亚型选择性、状态依赖性的NaV1通道阻滞剂利多卡因和卡马西平治疗神经性疼痛有效;然而,新型钠通道阻断镇痛药的靶标驱动开发通常不成功。最近的人类遗传数据表明,NaV1.7通道亚型在疼痛信号传导中起着重要作用,而重要的临床前数据表明,NaV1.8通道是一个有希望的镇痛靶点,这表明选择性阻断这些亚型可能会提高钠通道调节剂的治疗指标。然而,很少有亚型选择性小分子钠通道阻滞剂被描述。本文综述了在伤害性神经元中优先表达的NaV1通道亚型,用于开发NaV1通道阻滞剂的检测技术,并总结了亚型选择性和新型状态依赖性NaV1通道阻滞剂的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
The role of the mTOR pathway in regulating food intake. The role of tau kinases in Alzheimer's disease. Current understanding and importance of histone phosphorylation in regulating chromatin biology. Network biology as a new approach to drug discovery. Conformational ensembles, signal transduction and residue hot spots: application to drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1