Easy Multiplicity Control in Equivalence Testing Using Two One-sided Tests.

IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY American Statistician Pub Date : 2009-05-01 DOI:10.1198/tast.2009.0029
Carolyn Lauzon, Brian Caffo
{"title":"Easy Multiplicity Control in Equivalence Testing Using Two One-sided Tests.","authors":"Carolyn Lauzon,&nbsp;Brian Caffo","doi":"10.1198/tast.2009.0029","DOIUrl":null,"url":null,"abstract":"<p><p>Equivalence testing is growing in use in scientific research outside of its traditional role in the drug approval process. Largely due to its ease of use and recommendation from the United States Food and Drug Administration guidance, the most common statistical method for testing equivalence is the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that bounds the family-wise error rate using TOST is given. This condition then leads to a simple solution for controlling the family-wise error rate. Specifically, we demonstrate that if all pair-wise comparisons of k independent groups are being evaluated for equivalence, then simply scaling the nominal Type I error rate down by (k - 1) is sufficient to maintain the family-wise error rate at the desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni correction. An example of equivalence testing in a non drug-development setting is given.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2009-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1198/tast.2009.0029","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1198/tast.2009.0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 45

Abstract

Equivalence testing is growing in use in scientific research outside of its traditional role in the drug approval process. Largely due to its ease of use and recommendation from the United States Food and Drug Administration guidance, the most common statistical method for testing equivalence is the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that bounds the family-wise error rate using TOST is given. This condition then leads to a simple solution for controlling the family-wise error rate. Specifically, we demonstrate that if all pair-wise comparisons of k independent groups are being evaluated for equivalence, then simply scaling the nominal Type I error rate down by (k - 1) is sufficient to maintain the family-wise error rate at the desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni correction. An example of equivalence testing in a non drug-development setting is given.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用两个单侧检验的等价检验中的简单多重控制。
等效检验在药物审批过程中的传统作用之外,越来越多地应用于科学研究。主要由于其易于使用和美国食品和药物管理局指南的推荐,检测等效性的最常用统计方法是双单侧试验程序(TOST)。与经典的点零假设检验一样,随着比较的增多,TOST也受到多重性的影响。在本文中,给出了一个使用TOST限定家庭错误率的条件。这种情况导致了控制家庭错误率的简单解决方案。具体地说,我们证明,如果k个独立组的所有两两比较都被评估为相等,那么简单地将名义I型错误率降低(k - 1)就足以使家庭错误率保持在期望的值或更低。由此得出的规则比同样简单的邦费罗尼修正要保守得多。给出了在非药物开发环境中进行等效试验的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Statistician
American Statistician 数学-统计学与概率论
CiteScore
3.50
自引率
5.60%
发文量
64
审稿时长
>12 weeks
期刊介绍: Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.
期刊最新文献
Causal Inference with Complex Surveys: A Unified Perspective on Sample Selection and Exposure Selection Performance Analysis of NSUM Estimators in Social-Network Topologies Cross-validatory Z-Residual for Diagnosing Shared Frailty Models A Pareto tail plot without moment restrictions Sparse-group boosting: Unbiased group and variable selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1