A methodology for prediction of acute hypotensive episodes in ICU via a risk scoring model including analysis of ST-segment variations.

A Ghaffari, M R Homaeinezhad, M Atarod, M Akraminia
{"title":"A methodology for prediction of acute hypotensive episodes in ICU via a risk scoring model including analysis of ST-segment variations.","authors":"A Ghaffari,&nbsp;M R Homaeinezhad,&nbsp;M Atarod,&nbsp;M Akraminia","doi":"10.1007/s10558-009-9088-x","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to detect Acute Hypotensive Episodes (AHE) and Mean Arterial Pressure Dropping Regimes (MAPDRs) using ECG signal and Arterial Blood Pressure waveforms. To meet this end, the QRS complexes and end-systolic end-diastolic pulses are first extracted using two innovative Modified Hilbert Transform-Based algorithms namely as ECGMHT and BPMHT. A new smoothing algorithm is next developed based on piecewise polynomial fitting to smooth the fast fluctuations observed in RR-tachogram, systolic blood pressure (SBP) and diastolic blood pressure (DBP) trends. Afterwards, in order to consider the mutual influence of parameters on the evaluation of shock probability, a Sugeno Adaptive Network-based Fuzzy Inference System-ANFIS is trained using Hasdai et al. (J Am Coll Cardiol, 35: 136–143, 2000) parameters as input, with appropriate membership functions for each parameter. Using this network, it will be possible to incorporate the possible mutual influences between risk parameters such as heart rate, SBP, DBP, ST-segment episodes, age, gender, weight and some miscellaneous factors to the calculation of shock occurrence probability. In the next step, the proposed algorithm is applied to 15 subjects of the MIMIC II Database and AHE and MAPDRs (MAP ≤ 60 mmHg with a period of 30 min or more) are identified. As a result of this study, for a sequence of MAPDRs as long as 20 min or more, there will exist a consequent high peak with the duration of 3–4 min in the corresponding probability of cardiogenic shock diagram.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 1","pages":"12-29"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-009-9088-x","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-009-9088-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The aim of this study is to detect Acute Hypotensive Episodes (AHE) and Mean Arterial Pressure Dropping Regimes (MAPDRs) using ECG signal and Arterial Blood Pressure waveforms. To meet this end, the QRS complexes and end-systolic end-diastolic pulses are first extracted using two innovative Modified Hilbert Transform-Based algorithms namely as ECGMHT and BPMHT. A new smoothing algorithm is next developed based on piecewise polynomial fitting to smooth the fast fluctuations observed in RR-tachogram, systolic blood pressure (SBP) and diastolic blood pressure (DBP) trends. Afterwards, in order to consider the mutual influence of parameters on the evaluation of shock probability, a Sugeno Adaptive Network-based Fuzzy Inference System-ANFIS is trained using Hasdai et al. (J Am Coll Cardiol, 35: 136–143, 2000) parameters as input, with appropriate membership functions for each parameter. Using this network, it will be possible to incorporate the possible mutual influences between risk parameters such as heart rate, SBP, DBP, ST-segment episodes, age, gender, weight and some miscellaneous factors to the calculation of shock occurrence probability. In the next step, the proposed algorithm is applied to 15 subjects of the MIMIC II Database and AHE and MAPDRs (MAP ≤ 60 mmHg with a period of 30 min or more) are identified. As a result of this study, for a sequence of MAPDRs as long as 20 min or more, there will exist a consequent high peak with the duration of 3–4 min in the corresponding probability of cardiogenic shock diagram.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过包括st段变异分析的风险评分模型预测ICU急性低血压发作的方法。
本研究的目的是利用心电图信号和动脉血压波形检测急性低血压发作(AHE)和平均动脉压下降(MAPDRs)。为了实现这一目标,首先使用两种创新的基于改进希尔伯特变换的算法(即ECGMHT和BPMHT)提取QRS复合物和舒张末期脉冲。然后,基于分段多项式拟合提出了一种新的平滑算法,以平滑rr -速度图、收缩压(SBP)和舒张压(DBP)的快速波动趋势。然后,为了考虑参数对冲击概率评估的相互影响,使用Hasdai等(J Am Coll Cardiol, 35: 136 - 143,2000)参数作为输入,对基于Sugeno自适应网络的模糊推理系统(anfis)进行训练,每个参数具有适当的隶属函数。利用该网络,可以将心率、收缩压、舒张压、st段发作、年龄、性别、体重等风险参数之间可能存在的相互影响纳入休克发生概率的计算中。下一步,将该算法应用于MIMIC II数据库的15名受试者,并识别出AHE和mapdr (MAP≤60 mmHg,周期为30 min或更长)。本研究结果表明,对于长达20 min及以上的mapdr序列,相应的心源性休克概率图中会出现一个持续时间为3-4 min的峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Bioprinting of a Tissue Engineered Human Heart Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 2: From Fabrication to Optimization Square Root Design for Natural Frequency Module of Dynamic ECG Features—a Preliminary Study Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 1: From Conception to Materials Selection Biopolymers as Potential Carrier for Effervescent Reaction Based Drug Delivery System in Gastrointestinal Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1