Automatic left ventricular contour extraction from cardiac magnetic resonance images using cantilever beam and random walk approach.

Sarada Prasad Dakua, J S Sahambi
{"title":"Automatic left ventricular contour extraction from cardiac magnetic resonance images using cantilever beam and random walk approach.","authors":"Sarada Prasad Dakua,&nbsp;J S Sahambi","doi":"10.1007/s10558-009-9091-2","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure is a well-known debilitating disease. From clinical point of view, segmentation of left ventricle (LV) is important in a cardiac magnetic resonance (CMR) image. Accurate parameters are desired for better diagnosis. Proper and fast image segmentation of LV is of paramount importance prior to estimation of these parameters. We prefer random walk approach over other existing techniques due to two of its advantages: (1) robustness to noise and, (2) it does not require any special condition to work. Performance of the method solely depends on the selection of initial seed and parameter β. Problems arise while applying this method to different kind of CMR images bearing different ischemia. It is due due to their implicit geometry definitions unlike general images, where the boundary of LV in the image is not available in an explicit form. This type of images bear multi-labeled LV and the manual seed selection in these images introduces variability in the results. In view of this, the paper presents two modifications in the algorithm: (1) automatic seed selection and, (2) automatic estimation of β from the image. The highlight of our method is its ability to succeed with minimum number of initial seeds.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 1","pages":"30-43"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-009-9091-2","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-009-9091-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Heart failure is a well-known debilitating disease. From clinical point of view, segmentation of left ventricle (LV) is important in a cardiac magnetic resonance (CMR) image. Accurate parameters are desired for better diagnosis. Proper and fast image segmentation of LV is of paramount importance prior to estimation of these parameters. We prefer random walk approach over other existing techniques due to two of its advantages: (1) robustness to noise and, (2) it does not require any special condition to work. Performance of the method solely depends on the selection of initial seed and parameter β. Problems arise while applying this method to different kind of CMR images bearing different ischemia. It is due due to their implicit geometry definitions unlike general images, where the boundary of LV in the image is not available in an explicit form. This type of images bear multi-labeled LV and the manual seed selection in these images introduces variability in the results. In view of this, the paper presents two modifications in the algorithm: (1) automatic seed selection and, (2) automatic estimation of β from the image. The highlight of our method is its ability to succeed with minimum number of initial seeds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于悬臂梁和随机游走方法的心脏磁共振图像左心室轮廓自动提取。
心力衰竭是一种众所周知的使人衰弱的疾病。从临床角度来看,左心室(LV)的分割在心脏磁共振(CMR)图像中是很重要的。为了更好地诊断,需要准确的参数。在对这些参数进行估计之前,正确快速地分割LV图像是至关重要的。与其他现有技术相比,我们更喜欢随机漫步方法,因为它有两个优点:(1)对噪声的鲁棒性;(2)它不需要任何特殊条件即可工作。该方法的性能仅取决于初始种子和参数β的选择。该方法应用于不同类型的CMR图像时,存在一定的问题。这是由于它们的隐式几何定义与一般图像不同,其中图像中的LV边界不能以显式形式提供。这种类型的图像具有多标记的LV,并且这些图像中的人工种子选择引入了结果的可变性。鉴于此,本文对算法进行了两种改进:(1)自动选择种子;(2)从图像中自动估计β。该方法的优点在于它能够以最小的初始种子数量获得成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Bioprinting of a Tissue Engineered Human Heart Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 2: From Fabrication to Optimization Square Root Design for Natural Frequency Module of Dynamic ECG Features—a Preliminary Study Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 1: From Conception to Materials Selection Biopolymers as Potential Carrier for Effervescent Reaction Based Drug Delivery System in Gastrointestinal Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1