Christoph Wotzlaw, Silke Gneuss, Rebecca Konietzny, Joachim Fandrey
{"title":"Nanoscopy of the cellular response to hypoxia by means of fluorescence resonance energy transfer (FRET) and new FRET software.","authors":"Christoph Wotzlaw, Silke Gneuss, Rebecca Konietzny, Joachim Fandrey","doi":"10.1186/1757-5036-3-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cellular oxygen sensing is fundamental to all mammalian cells to adequately respond to a shortage of oxygen by increasing the expression of genes that will ensure energy homeostasis. The transcription factor Hypoxia-Inducible-Factor-1 (HIF-1) is the key regulator of the response because it coordinates the expression of hypoxia inducible genes. The abundance and activity of HIF-1 are controlled through posttranslational modification by hydroxylases, the cellular oxygen sensors, of which the activity is oxygen dependent.</p><p><strong>Methods: </strong>Fluorescence resonance energy transfer (FRET) was established to determine the assembly of the HIF-1 complex and to study the interaction of the alpha-subunit of HIF-1 with the O2-sensing hydroxylase. New software was developed to improve the quality and reliability of FRET measurements.</p><p><strong>Results: </strong>FRET revealed close proximity between the HIF-1 subunits in multiple cells. Data obtained by sensitized FRET in this study were fully compatible with previous work using acceptor bleaching FRET. Interaction between the O2-sensing hydroxylase PHD1 and HIF-1alpha was demonstrated and revealed exclusive localization of O2-sensing in the nucleus. The new software FRET significantly improved the quality and speed of FRET measurements.</p><p><strong>Conclusion: </strong>FRET measurements do not only allow following the assembly of the HIF-1 complex under hypoxic conditions but can also provide important information about the process of O2-sensing and its localisation within a cell.MCS codes: 92C30, 92C05, 92C40.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"3 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-3-5","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PMC biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1757-5036-3-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Background: Cellular oxygen sensing is fundamental to all mammalian cells to adequately respond to a shortage of oxygen by increasing the expression of genes that will ensure energy homeostasis. The transcription factor Hypoxia-Inducible-Factor-1 (HIF-1) is the key regulator of the response because it coordinates the expression of hypoxia inducible genes. The abundance and activity of HIF-1 are controlled through posttranslational modification by hydroxylases, the cellular oxygen sensors, of which the activity is oxygen dependent.
Methods: Fluorescence resonance energy transfer (FRET) was established to determine the assembly of the HIF-1 complex and to study the interaction of the alpha-subunit of HIF-1 with the O2-sensing hydroxylase. New software was developed to improve the quality and reliability of FRET measurements.
Results: FRET revealed close proximity between the HIF-1 subunits in multiple cells. Data obtained by sensitized FRET in this study were fully compatible with previous work using acceptor bleaching FRET. Interaction between the O2-sensing hydroxylase PHD1 and HIF-1alpha was demonstrated and revealed exclusive localization of O2-sensing in the nucleus. The new software FRET significantly improved the quality and speed of FRET measurements.
Conclusion: FRET measurements do not only allow following the assembly of the HIF-1 complex under hypoxic conditions but can also provide important information about the process of O2-sensing and its localisation within a cell.MCS codes: 92C30, 92C05, 92C40.