Investigation of interaction of vaccinia virus complement control protein and curcumin with complement components c3 and c3b using quartz crystal microbalance with dissipation monitoring technology.

Q3 Biochemistry, Genetics and Molecular Biology Open Biochemistry Journal Pub Date : 2010-01-27 DOI:10.2174/1874091X01004010009
Amod P Kulkarni, Philippa J Randall, Krishna Murthy, Lauriston A Kellaway, Girish J Kotwal
{"title":"Investigation of interaction of vaccinia virus complement control protein and curcumin with complement components c3 and c3b using quartz crystal microbalance with dissipation monitoring technology.","authors":"Amod P Kulkarni,&nbsp;Philippa J Randall,&nbsp;Krishna Murthy,&nbsp;Lauriston A Kellaway,&nbsp;Girish J Kotwal","doi":"10.2174/1874091X01004010009","DOIUrl":null,"url":null,"abstract":"<p><p>C3 and C3b, the components central to the complement activation, also play a damaging role in several inflammatory disorders. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are natural compounds with different biological origins reported to regulate complement activation. However, both VCP and Cur have not been investigated for their interaction with the third component (C3) prior to it being converted to its activated form (C3b). These two compounds have also not been compared to each other with respect to their interactions with C3 and C3b. Quartz crystal microbalance with dissipation monitoring (QCM-D) is a novel technology used to study the interaction of biomolecules. This technology was applied to characterize the interactions of VCP, Cur and appropriate controls with the key complement components. Cur as well as VCP showed binding to both C3 and to C3b, Cur however bound to C3b to a lesser extent.</p>","PeriodicalId":38958,"journal":{"name":"Open Biochemistry Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/73/8b/TOBIOCJ-4-9.PMC2835864.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biochemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874091X01004010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

C3 and C3b, the components central to the complement activation, also play a damaging role in several inflammatory disorders. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are natural compounds with different biological origins reported to regulate complement activation. However, both VCP and Cur have not been investigated for their interaction with the third component (C3) prior to it being converted to its activated form (C3b). These two compounds have also not been compared to each other with respect to their interactions with C3 and C3b. Quartz crystal microbalance with dissipation monitoring (QCM-D) is a novel technology used to study the interaction of biomolecules. This technology was applied to characterize the interactions of VCP, Cur and appropriate controls with the key complement components. Cur as well as VCP showed binding to both C3 and to C3b, Cur however bound to C3b to a lesser extent.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用石英晶体微天平耗散监测技术研究牛痘病毒补体控制蛋白和姜黄素与补体组分c3和c3b的相互作用。
补体活化的核心成分C3和C3b在几种炎症性疾病中也起着破坏性作用。牛痘病毒补体控制蛋白(VCP)和姜黄素(Cur)是据报道具有不同生物学来源的调节补体激活的天然化合物。然而,VCP和Cur在转化为其活化形式(C3b)之前与第三组分(C3)的相互作用尚未被研究。这两种化合物与C3和C3b的相互作用也没有被比较过。石英晶体微平衡耗散监测(QCM-D)是一种用于研究生物分子相互作用的新技术。该技术用于表征VCP, Cur和适当对照与关键补体组分的相互作用。Cur和VCP同时与C3和C3b结合,但Cur与C3b的结合程度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Biochemistry Journal
Open Biochemistry Journal Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.50
自引率
0.00%
发文量
5
期刊最新文献
The Activity of α-glucosidase Inhibition of Pediococcus Acidilactici BAMA 4 Isolated from “Naniura” Traditional Foods from North Sumatera, Indonesia The GPCR Antagonistic Drug CM-20 Stimulates Mitochondrial Activity in Human RPE Cells. Co-Administration of Fish Oil With Signal Transduction Inhibitors Has Anti-Migration Effects in Breast Cancer Cell Lines, in vitro. RpbL12 Assists Catalysis by Correctly Positioning the Incoming Aminoacyl-tRNA in the A-Site of E. coli 70S Ribosomes. Micro-RNAs -106a and -362-3p in Peripheral Blood of Inflammatory Bowel Disease Patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1