Phosphorylation State-Dependent High Throughput Screening of the c-Met Kinase.

Elham Behshad, Ronald M Klabe, Alexander Margulis, Mary Becker-Pasha, Mark J Rupar, Paul Collier, Phillip C Liu, Gregory F Hollis, Timothy C Burn, Richard Wynn
{"title":"Phosphorylation State-Dependent High Throughput Screening of the c-Met Kinase.","authors":"Elham Behshad,&nbsp;Ronald M Klabe,&nbsp;Alexander Margulis,&nbsp;Mary Becker-Pasha,&nbsp;Mark J Rupar,&nbsp;Paul Collier,&nbsp;Phillip C Liu,&nbsp;Gregory F Hollis,&nbsp;Timothy C Burn,&nbsp;Richard Wynn","doi":"10.2174/1875397301004010027","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput screening (HTS) of ~50,000 chemical compounds against phosphorylated and unphosphorylated c-Met, a tyrosine kinase receptor for hepatocyte growth factor (HGF), was carried out in order to compare hit rates, hit potencies and also to explore scaffolds that might serve as potential leads targeting only the unphosphorylated form of the enzyme. The hit rate and potency for the confirmed hit molecules were higher for the unphosphoryalted form of c-Met. While the target of small molecule inhibitor discovery efforts has traditionally been the phosphorylated form, there are now examples of small molecules that target unphosphorylated kinases. Screening for inhibitors of unphosphorylated kinases may represent a complementary approach for prioritizing chemical scaffolds for hit-to-lead follow ups.</p>","PeriodicalId":88232,"journal":{"name":"Current chemical genomics","volume":"4 ","pages":"27-33"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/4e/TOCHGENJ-4-27.PMC2885599.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current chemical genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875397301004010027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

High-throughput screening (HTS) of ~50,000 chemical compounds against phosphorylated and unphosphorylated c-Met, a tyrosine kinase receptor for hepatocyte growth factor (HGF), was carried out in order to compare hit rates, hit potencies and also to explore scaffolds that might serve as potential leads targeting only the unphosphorylated form of the enzyme. The hit rate and potency for the confirmed hit molecules were higher for the unphosphoryalted form of c-Met. While the target of small molecule inhibitor discovery efforts has traditionally been the phosphorylated form, there are now examples of small molecules that target unphosphorylated kinases. Screening for inhibitors of unphosphorylated kinases may represent a complementary approach for prioritizing chemical scaffolds for hit-to-lead follow ups.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷酸化状态依赖性c-Met激酶的高通量筛选。
针对肝细胞生长因子(HGF)酪氨酸激酶受体c-Met的磷酸化和未磷酸化的约50,000种化合物进行了高通量筛选(HTS),以比较命中率,命中效力,并探索可能作为仅针对未磷酸化形式的酶的潜在先导的支架。未磷酸化形式的c-Met的命中率和效力更高。虽然小分子抑制剂发现的目标传统上是磷酸化的形式,但现在有针对非磷酸化激酶的小分子的例子。筛选非磷酸化激酶抑制剂可能是优先考虑化学支架的补充方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Particulate Flow in a Channel by Application of CFD, DEM and LDA/PDA Kinetic Models of Integrated Solidification and Cementation of Cement- formation Interface with New Method Development of RNA aptamer and its ligand binding assay on microchip electrophoresis. HaloTag® Platform: From Proteomics to Cellular Analysis and Animal Imaging. Galectin-1 and Galectin-3 Mediate Protocadherin-24-Dependent Membrane Localization of β-catenin in Colon Cancer Cell Line HCT116.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1