{"title":"Cognitive effects of muscarinic M1 functional agonists in non-human primates and clinical trials.","authors":"Robert A McArthur, Julian Gray, Rudy Schreiber","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The limited effect of AChE inhibitors and NMDA receptor antagonists for the treatment of the cognitive symptoms of Alzheimer's disease has prompted the search for new drugs that are capable not only of treating behavioral symptoms, but also of modifying the disease process. Considerable research efforts have been focused on orthosteric muscarinic M1 functional agonists during the past decade to address both these strategies. Part of this research has included the use of non-human primates as models of cognitive impairment to demonstrate preclinical efficacy. No M1 functional agonist has been successfully registered for the treatment of Alzheimer's disease, mostly because of mechanism-related adverse side effects and marginal cognitive effects. However, the M1 agonist xanomeline exhibited preclinical and clinical efficacy for the treatment of the negative and cognitive symptoms of schizophrenia. These results prompted renewed interest in repositioning compounds such as sabcomeline (Proximagen Group plc) for this indication, as well as developing allosteric muscarinic M1 ligands to improve efficacy while reducing side-effect-related attrition. This review discusses preclinical and clinical data from orthosteric M1 functional agonists, focusing on target validation in primate cognition studies, and provides recommendations for testing a new generation of M1 ligands and compounds with novel mechanisms of action.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 7","pages":"740-60"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in investigational drugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The limited effect of AChE inhibitors and NMDA receptor antagonists for the treatment of the cognitive symptoms of Alzheimer's disease has prompted the search for new drugs that are capable not only of treating behavioral symptoms, but also of modifying the disease process. Considerable research efforts have been focused on orthosteric muscarinic M1 functional agonists during the past decade to address both these strategies. Part of this research has included the use of non-human primates as models of cognitive impairment to demonstrate preclinical efficacy. No M1 functional agonist has been successfully registered for the treatment of Alzheimer's disease, mostly because of mechanism-related adverse side effects and marginal cognitive effects. However, the M1 agonist xanomeline exhibited preclinical and clinical efficacy for the treatment of the negative and cognitive symptoms of schizophrenia. These results prompted renewed interest in repositioning compounds such as sabcomeline (Proximagen Group plc) for this indication, as well as developing allosteric muscarinic M1 ligands to improve efficacy while reducing side-effect-related attrition. This review discusses preclinical and clinical data from orthosteric M1 functional agonists, focusing on target validation in primate cognition studies, and provides recommendations for testing a new generation of M1 ligands and compounds with novel mechanisms of action.
乙酰胆碱酯酶抑制剂和NMDA受体拮抗剂对阿尔茨海默病认知症状的治疗效果有限,这促使人们寻找不仅能治疗行为症状,而且能改变疾病过程的新药。在过去的十年中,相当多的研究工作集中在正畸毒蕈碱M1功能激动剂上,以解决这两种策略。这项研究的一部分包括使用非人类灵长类动物作为认知障碍模型来证明临床前疗效。目前还没有M1功能性激动剂成功注册用于治疗阿尔茨海默病,主要是因为其机制相关的不良副作用和边际认知效应。然而,M1激动剂xanomeline在治疗精神分裂症的阴性症状和认知症状方面表现出临床前和临床疗效。这些结果促使人们重新对sabcomeline (Proximagen Group plc)等用于该适应症的化合物进行定位,以及开发变构毒蕈碱M1配体以提高疗效,同时减少副作用相关的损耗。本文讨论了正位M1功能激动剂的临床前和临床数据,重点讨论了灵长类动物认知研究中的靶点验证,并为测试新一代M1配体和具有新作用机制的化合物提供了建议。