{"title":"The PGE2 EP2 receptor and its selective activation are beneficial against ischemic stroke.","authors":"Muzamil Ahmad, Sofiyan Saleem, Zahoor Shah, Takayuki Maruyama, Shuh Narumiya, Sylvain Doré","doi":"10.1186/2040-7378-2-12","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prostaglandin E2 EP2 receptor has been shown to be important in dictating outcomes in various neuroinflammatory disorders. Here, we investigated the importance of the EP2 receptor in short- and long-term ischemic outcomes by subjecting wildtype (WT) and EP2 knockout (EP2-/-) mice to two distinct and complementary stroke models [transient and permanent middle cerebral artery occlusion (tMCAO and pMCAO)] and by using the EP2 receptor agonist ONO-AE1-259-01.</p><p><strong>Methods: </strong>First, WT and EP2-/- mice were subjected to 90-min tMCAO with a monofilament followed by 4-day reperfusion. Second, WT mice were infused intracerebroventricularly with vehicle or ONO-AE1-259-01 45-50 min before being subjected to tMCAO. Finally, WT and EP2-/- mice were subjected to pMCAO and allowed to survive for an extended period of 7 days.</p><p><strong>Results: </strong>Infarct volumes in EP2-/- mice were 55.0 +/- 9.1% larger after tMCAO and 33.3 +/- 8.6% larger after pMCAO than those in WT mice. Neurobehavioral deficits also were significantly greater in the EP2-/- mice. These results suggest that EP2 is beneficial and that activation is sustained for days after the stroke. We also found that pharmacologic activation of EP2 with 1.0- and 2.0-nmol doses of ONO-AE1-259-01 was sufficient to significantly reduce the infarct volume in WT mice compared with that in vehicle-treated controls (20.1 +/- 3.9% vs. 37.1 +/- 4.6%). This reduction correlated with improved neurologic scores. No significant effect on physiologic parameters was observed.</p><p><strong>Conclusion: </strong>Together, our results reveal that pharmacologic stimulation of the EP2 receptor has an important beneficial role in cerebral ischemia and might be considered as an adjunct therapy for ischemic stroke.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"2 1","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-2-12","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental & Translational Stroke Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2040-7378-2-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Background: The prostaglandin E2 EP2 receptor has been shown to be important in dictating outcomes in various neuroinflammatory disorders. Here, we investigated the importance of the EP2 receptor in short- and long-term ischemic outcomes by subjecting wildtype (WT) and EP2 knockout (EP2-/-) mice to two distinct and complementary stroke models [transient and permanent middle cerebral artery occlusion (tMCAO and pMCAO)] and by using the EP2 receptor agonist ONO-AE1-259-01.
Methods: First, WT and EP2-/- mice were subjected to 90-min tMCAO with a monofilament followed by 4-day reperfusion. Second, WT mice were infused intracerebroventricularly with vehicle or ONO-AE1-259-01 45-50 min before being subjected to tMCAO. Finally, WT and EP2-/- mice were subjected to pMCAO and allowed to survive for an extended period of 7 days.
Results: Infarct volumes in EP2-/- mice were 55.0 +/- 9.1% larger after tMCAO and 33.3 +/- 8.6% larger after pMCAO than those in WT mice. Neurobehavioral deficits also were significantly greater in the EP2-/- mice. These results suggest that EP2 is beneficial and that activation is sustained for days after the stroke. We also found that pharmacologic activation of EP2 with 1.0- and 2.0-nmol doses of ONO-AE1-259-01 was sufficient to significantly reduce the infarct volume in WT mice compared with that in vehicle-treated controls (20.1 +/- 3.9% vs. 37.1 +/- 4.6%). This reduction correlated with improved neurologic scores. No significant effect on physiologic parameters was observed.
Conclusion: Together, our results reveal that pharmacologic stimulation of the EP2 receptor has an important beneficial role in cerebral ischemia and might be considered as an adjunct therapy for ischemic stroke.