James N Tsoporis, Forough Mohammadzadeh, Thomas G Parker
{"title":"Intracellular and Extracellular Effects of S100B in the Cardiovascular Response to Disease.","authors":"James N Tsoporis, Forough Mohammadzadeh, Thomas G Parker","doi":"10.1155/2010/206073","DOIUrl":null,"url":null,"abstract":"<p><p>S100B, a calcium-binding protein of the EF-hand type, exerts both intracellular and extracellular functions. S100B is induced in the myocardium of human subjects and an experimental rat model following myocardial infarction. Forced expression of S100B in neonatal rat myocyte cultures and high level expression of S100B in transgenic mice hearts inhibit cardiac hypertrophy and the associated phenotype but augments myocyte apoptosis following myocardial infarction. By contrast, knocking out S100B, augments hypertrophy, decreases apoptosis and preserves cardiac function following myocardial infarction. Expression of S100B in aortic smooth muscle cells inhibits cell proliferation and the vascular response to adrenergic stimulation. S100B induces apoptosis by an extracellular mechanism via interaction with the receptor for advanced glycation end products and activating ERK1/2 and p53 signaling. The intracellular and extracellular roles of S100B are attractive therapeutic targets for the treatment of both cardiac and vascular diseases.</p>","PeriodicalId":88441,"journal":{"name":"Cardiovascular psychiatry and neurology","volume":"2010 ","pages":"206073"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2010/206073","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular psychiatry and neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/206073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/7/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
S100B, a calcium-binding protein of the EF-hand type, exerts both intracellular and extracellular functions. S100B is induced in the myocardium of human subjects and an experimental rat model following myocardial infarction. Forced expression of S100B in neonatal rat myocyte cultures and high level expression of S100B in transgenic mice hearts inhibit cardiac hypertrophy and the associated phenotype but augments myocyte apoptosis following myocardial infarction. By contrast, knocking out S100B, augments hypertrophy, decreases apoptosis and preserves cardiac function following myocardial infarction. Expression of S100B in aortic smooth muscle cells inhibits cell proliferation and the vascular response to adrenergic stimulation. S100B induces apoptosis by an extracellular mechanism via interaction with the receptor for advanced glycation end products and activating ERK1/2 and p53 signaling. The intracellular and extracellular roles of S100B are attractive therapeutic targets for the treatment of both cardiac and vascular diseases.