Force feature spaces for visualization and classification.

Dragana Veljkovic, Kay A Robbins
{"title":"Force feature spaces for visualization and classification.","authors":"Dragana Veljkovic,&nbsp;Kay A Robbins","doi":"10.1109/ICMLA.2008.46","DOIUrl":null,"url":null,"abstract":"<p><p>Distance-preserving dimension reduction techniques can fail to separate elements of different classes when the neighborhood structure does not carry sufficient class information. We introduce a new visual technique, K-epsilon diagrams, to analyze dataset topological structure and to assess whether intra-class and inter-class neighborhoods can be distinguished.We propose a force feature space data transform that emphasizes similarities between same-class points and enhances class separability. We show that the force feature space transform combined with distance-preserving dimension reduction produces better visualizations than dimension reduction alone. When used for classification, force feature spaces improve performance of K-nearest neighbor classifiers. Furthermore, the quality of force feature space transformations can be assessed using K-epsilon diagrams.</p>","PeriodicalId":88900,"journal":{"name":"International Conference on Digital Signal Processing proceedings : DSP. International Conference on Digital Signal Processing","volume":"2008 ","pages":"426-433"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICMLA.2008.46","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Signal Processing proceedings : DSP. International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2008.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Distance-preserving dimension reduction techniques can fail to separate elements of different classes when the neighborhood structure does not carry sufficient class information. We introduce a new visual technique, K-epsilon diagrams, to analyze dataset topological structure and to assess whether intra-class and inter-class neighborhoods can be distinguished.We propose a force feature space data transform that emphasizes similarities between same-class points and enhances class separability. We show that the force feature space transform combined with distance-preserving dimension reduction produces better visualizations than dimension reduction alone. When used for classification, force feature spaces improve performance of K-nearest neighbor classifiers. Furthermore, the quality of force feature space transformations can be assessed using K-epsilon diagrams.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可视化和分类的强制特征空间。
当邻域结构没有携带足够的类信息时,保持距离的降维技术无法分离不同类别的元素。我们引入了一种新的视觉技术,K-epsilon图,来分析数据集的拓扑结构,并评估是否可以区分类内和类间邻域。提出了一种强调同类点之间相似性和增强类可分性的力特征空间数据变换方法。我们证明了力特征空间变换结合距离保持降维比单独降维产生更好的可视化效果。当用于分类时,强制特征空间提高了k近邻分类器的性能。此外,可以使用K-epsilon图来评估力特征空间变换的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progressive Compression and Encryption of Hyperspectral Images Based on Walsh Transform and Fingerprint Recognition Discrete Multiple-parameter Fractional Fourier Transform ICDSP 2022: 6th International Conference on Digital Signal Processing, Chengdu, China, February 25 - 27, 2022 Sentiment Analysis on Choosing Senior High School Strand in Preparation for Tertiary Courses Adaptive Window Width Selection Algorithm for Gabor Transform Based on Improved Shannon Entropy Research of Association Rules Mining based on Fuzzy Alarm Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1