{"title":"A New-Fangled FES-k-Means Clustering Algorithm for Disease Discovery and Visual Analytics.","authors":"Tonny J Oyana","doi":"10.1155/2010/746021","DOIUrl":null,"url":null,"abstract":"<p><p>The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique-the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2010/746021","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/746021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The central purpose of this study is to further evaluate the quality of the performance of a new algorithm. The study provides additional evidence on this algorithm that was designed to increase the overall efficiency of the original k-means clustering technique-the Fast, Efficient, and Scalable k-means algorithm (FES-k-means). The FES-k-means algorithm uses a hybrid approach that comprises the k-d tree data structure that enhances the nearest neighbor query, the original k-means algorithm, and an adaptation rate proposed by Mashor. This algorithm was tested using two real datasets and one synthetic dataset. It was employed twice on all three datasets: once on data trained by the innovative MIL-SOM method and then on the actual untrained data in order to evaluate its competence. This two-step approach of data training prior to clustering provides a solid foundation for knowledge discovery and data mining, otherwise unclaimed by clustering methods alone. The benefits of this method are that it produces clusters similar to the original k-means method at a much faster rate as shown by runtime comparison data; and it provides efficient analysis of large geospatial data with implications for disease mechanism discovery. From a disease mechanism discovery perspective, it is hypothesized that the linear-like pattern of elevated blood lead levels discovered in the city of Chicago may be spatially linked to the city's water service lines.